Leveraging comparative proteomics to improve human disease models
利用比较蛋白质组学改善人类疾病模型
基本信息
- 批准号:10313929
- 负责人:
- 金额:$ 3.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAsthmaAutomobile DrivingBackBiochemicalBiological ProcessBiologyCandidate Disease GeneCharcot-Marie-Tooth DiseaseChronicCiliaCiliary Motility DisordersColorectal CancerComplexConfocal MicroscopyDataData SetDefectDiatomsDiseaseDisease modelDynein ATPaseDystoniaEmbryoEncephalopathiesEukaryotaFractionationFunctional disorderGene FamilyGenesGeneticGenetic DiseasesGolgi ApparatusGuiltHandHumanHuman GeneticsHuman GenomeKidney DiseasesLeigh DiseaseLifeLinkLiteratureLung diseasesMalignant NeoplasmsMapsMass Spectrum AnalysisMeasuresMicrocephalyModelingMolecularMotorNerve DegenerationNeural Tube DefectsNoonan SyndromeOrganellesOrganismPaperPhenotypePlant ProteinsPlant RootsPlantsPolydactylyPrimary Ciliary DyskinesiasProteinsProteomeProteomicsRNA-Protein InteractionRanaReportingResearchRetinal DegenerationRoleSamplingSchizophreniaSpastic ParaplegiaStructureTaxonomyTechniquesTestingTissuesTreesValidationXenopusarmautism spectrum disorderbasebioinformatics pipelinecausal variantcell motilitycell typeciliopathycilium motilitycomparativecomputing resourcescrosslinkdevelopmental diseaseexperimental studygene conservationhuman diseaseimprovedknock-downleukemiamalignant breast neoplasmmotor disordermulticatalytic endopeptidase complexnervous system disordernovelpromoterprotein complexprotein protein interactionskillstraittrend
项目摘要
PROJECT SUMMARY
At the root of every human genetic disease lies molecular dysfunction of a biological process or protein
complex. Conversely, proteins interacting in the same biochemical complex are often linked to similar genetic
traits. Despite the revolution in high throughput biology, the molecular mechanisms underlying genetic
diseases remain only partly known. Previous studies have shown that highly conserved (ancient) proteins are
abundant across human cell types and tissues and are enriched for disease associations. My research aims to
exploit these trends by determining the most conserved protein interactions across the eukaryotic tree of life,
based on an analysis of available large scale proteomics data, and using this information to suggest new
candidate genes for diverse human diseases.
A large portion of these deeply conserved disease-associated proteins are traceable to the last eukaryotic
common ancestor (LECA), an ancestral organism that lived ~2 billion years ago. My own preliminary data
suggests that ~9,700 genes in the human genome can be dated back to LECA. Importantly, these deeply
conserved genes are responsible for a large and diverse subset of major human diseases, spanning
developmental disorders (e.g., Noonan syndrome, Leigh syndrome, microcephaly, neural tube defects),
cancers (e.g., leukemia, breast cancer, colorectal cancer), chronic respiratory diseases (e.g., ciliary dyskinesia,
asthma), neurological disorders (e.g., Charcot-Marie-Tooth disease, encephalopathy, schizophrenia, autism)
and motor problems (e.g., dystonia, spastic paraplegia).
My lab has collected and assembled protein interaction data for ~30 evolutionarily diverse eukaryotic
organisms. These data directly measure tens of thousands of protein interactions in each species. I propose
developing a draft map of the multiprotein assemblies that date back to the last eukaryotic common ancestor.
This unprecedented effort represents a synthesis of >20,000 mass spectrometry experiments, and thus will
require significant programming skill, statistical know-how, and computational resources. Using guilt-by-
association, I will then associate new candidate genes with diseases based on these conserved interactions. I
will concurrently verify the use of deep protein complex conservation as a way to associate genes with
diseases by functionally characterizing two novel proteins we previously observed to interact with Dnai2.
Defects in Dnai2 are known to cause primary ciliary dyskinesia, a subtype of ciliopathy marked by defects in
motile cilia; thus, these two novel proteins are also likely ciliopathy genes and may contribute to primary ciliary
dyskinesia.
项目概要
每种人类遗传疾病的根源在于生物过程或蛋白质的分子功能障碍
复杂的。相反,在同一生化复合物中相互作用的蛋白质通常与相似的遗传基因有关。
特征。尽管高通量生物学发生了革命,但遗传背后的分子机制
人们对疾病的了解还只是部分。先前的研究表明,高度保守(古老)的蛋白质是
丰富的人类细胞类型和组织,并且丰富的疾病关联。我的研究目的是
通过确定真核生命树中最保守的蛋白质相互作用来利用这些趋势,
基于对现有大规模蛋白质组学数据的分析,并利用这些信息提出新的建议
多种人类疾病的候选基因。
这些深度保守的疾病相关蛋白的很大一部分可以追溯到最后的真核生物
共同祖先(LECA),一种生活在约 20 亿年前的祖先生物。我自己的初步数据
表明人类基因组中约 9,700 个基因可以追溯到 LECA。重要的是,这些深深
保守基因导致大量不同的主要人类疾病,涵盖
发育障碍(例如努南综合征、利氏综合征、小头畸形、神经管缺陷),
癌症(例如白血病、乳腺癌、结直肠癌)、慢性呼吸道疾病(例如纤毛运动障碍、
哮喘)、神经系统疾病(例如腓骨肌萎缩症、脑病、精神分裂症、自闭症)
和运动问题(例如肌张力障碍、痉挛性截瘫)。
我的实验室收集并组装了约 30 种进化多样的真核生物的蛋白质相互作用数据
有机体。这些数据直接测量每个物种中数以万计的蛋白质相互作用。我建议
绘制可追溯到最后一个真核生物共同祖先的多蛋白组装图草图。
这项史无前例的努力综合了超过 20,000 项质谱实验,因此将
需要大量的编程技能、统计知识和计算资源。使用内疚感——
关联,然后我将根据这些保守的相互作用将新的候选基因与疾病联系起来。我
同时将验证深层蛋白质复合物保守性作为将基因与
通过对我们之前观察到的与 Dnai2 相互作用的两种新蛋白质进行功能表征来治疗疾病。
已知 Dnai2 缺陷会导致原发性纤毛运动障碍,这是纤毛病的一种亚型,其特征是 Dnai2 缺陷
运动纤毛;因此,这两种新蛋白也可能是纤毛病基因,并可能导致原发性纤毛病
运动障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachael M Cox其他文献
Rachael M Cox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachael M Cox', 18)}}的其他基金
Leveraging comparative proteomics to improve human disease models
利用比较蛋白质组学改善人类疾病模型
- 批准号:
10485960 - 财政年份:2021
- 资助金额:
$ 3.69万 - 项目类别:
相似国自然基金
DNA损伤感应器蛋白MRE11调控气道上皮cGAS-STING通路参与哮喘2型炎症的机制研究
- 批准号:82300029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微塑料通过MALT1促进巨噬细胞M1极化加重哮喘的机制研究
- 批准号:82300021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PFKFB3介导的糖酵解通过诱导气道上皮细胞功能失调加重哮喘气道炎症和气道重塑的机制
- 批准号:82300041
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
CD207阳性树突状细胞在过敏性哮喘气道炎症中作用及机制研究
- 批准号:82370035
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A Novel Bispecific Antibody for the Treatment of Idiopathic Pulmonary Fibrosis
一种治疗特发性肺纤维化的新型双特异性抗体
- 批准号:
10594937 - 财政年份:2022
- 资助金额:
$ 3.69万 - 项目类别:
A Novel Bispecific Antibody for the Treatment of Idiopathic Pulmonary Fibrosis
一种治疗特发性肺纤维化的新型双特异性抗体
- 批准号:
10482438 - 财政年份:2022
- 资助金额:
$ 3.69万 - 项目类别:
Leveraging comparative proteomics to improve human disease models
利用比较蛋白质组学改善人类疾病模型
- 批准号:
10485960 - 财政年份:2021
- 资助金额:
$ 3.69万 - 项目类别:
Lung Structural and Functional Alterations Following Early-life RSV Infection
早期 RSV 感染后肺结构和功能的改变
- 批准号:
10229146 - 财政年份:2021
- 资助金额:
$ 3.69万 - 项目类别: