Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials

用动态生物材料阐明纤维化对衰老干细胞的影响

基本信息

  • 批准号:
    10299996
  • 负责人:
  • 金额:
    $ 12.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Despite the ubiquitous role of fibrosis in tissue dysfunction arising from aging and disease, no representative in vitro model of the fibrotic microenvironment exists. Fibrosis is characterized by excess extracellular matrix (ECM) deposition that stiffens the cellular microenvironment. Therefore, to model fibrosis in vitro, cell culture substrates that permit quantitative, dynamic tuning of matrix mechanics and composition are necessary. However, existing dynamic hydrogel culture platforms generally rely on chemistries that may be toxic to cells or that simultaneously change multiple parameters, making it difficult to assign causal relationships between altered matrix properties and cell fate changes. Fibrotic stiffening occurs in a wide range of tissues, including skeletal muscle. Along with increased fibrosis, the regenerative function of skeletal muscle decreases with aging. Muscle stem cells (MuSCs) are responsible for maintaining and repairing muscle throughout life and are known to be acutely mechanosensitive, losing their stem cell potential when cultured on stiff substrates. Thus, the stiffened, fibrotic microenvironment may contribute to the diminished regenerative capacity of aged MuSCs. The goal of this project is to develop an in vitro model of tissue fibrosis based on dynamic hydrogel biomaterials and to employ this model to identify molecular mechanisms of MuSC mechanosensing that are implicated in MuSC dysfunction in aging. The mentored phase of this proposal will provide advanced technical training in aging biology, transgenic mouse models, cellular traction force measurement, and machine learning approaches for bioinformatics. This training will enable an independent research program leveraging dynamic biomaterials to deconvolve the complex interactions of mechanical forces, matrix biochemistry, and cell-cell signaling that dictate the progression of aging and disease. Additional structured training in scientific writing, grantsmanship, and research management will facilitate the transition to independence, supported by a committee of faculty from the Stanford Schools of Medicine and Engineering. Aim 1 will optimize a synthetic hydrogel system that uses near-infrared light and bioorthogonal reactions to dynamically stiffen the gels, mimicking fibrosis. These hydrogels will be used to elucidate mechanisms of mechanosensing in MuSCs, using FRET-based force sensors and transgenic mouse models. Aim 2 will model muscle aging in vitro, using dynamically stiffening gels modified with ECM components characteristic of aging. Single cell RNA sequencing and machine learning bioinformatics approaches will identify unique mechanically regulated drivers of cell fate that reduce MuSC regenerative potential in aging. Aim 3 will develop novel materials for 3D cell culture with dynamic tuning of viscoelastic properties to establish the first human model of muscle “aging in a dish.” This project stands to identify new therapeutic targets to improve muscle function with aging and to develop engineered platforms to study numerous heritable diseases and aging in diverse tissues.
项目概要 尽管纤维化在衰老和疾病引起的组织功能障碍中发挥着普遍的作用,但没有 纤维化微环境的代表性体外模型存在的特征是纤维化过度。 细胞外基质(ECM)沉积使细胞微环境变硬,因此可以模拟纤维化。 在体外,允许动态调节基质力学和成分的细胞培养基质是 然而,现有的动态水凝胶培养平台通常依赖于可能的化学物质。 对细胞有毒或同时改变多个参数,使得很难确定因果关系 纤维化硬化的发生范围很广 随着纤维化的增加,骨骼肌的再生功能也会受到影响。 肌肉干细胞(MuSC)随着年龄的增长而减少,负责维持和修复肌肉。 在整个生命周期中,已知具有敏锐的机械敏感性,在培养物上培养时会失去干细胞潜力 因此,僵硬的纤维化微环境可能导致再生能力减弱。 该项目的目标是开发一种基于老化 MuSC 的体外组织纤维化模型。 动态水凝胶生物材料并利用该模型来识别 MuSC 的分子机制 该提案的指导阶段将涉及与衰老过程中 MuSC 功能障碍有关的机械传感。 提供衰老生物学、转基因小鼠模型、细胞牵引力方面的先进技术培训 该培训将使生物信息学的测量和机器学习方法成为可能。 利用动态生物材料来解构机械的复杂相互作用的研究计划 决定衰老和疾病进展的力、基质生物化学和细胞信号传导。 科学写作、资助和研究管理方面的结构化培训将促进向 独立性,得到斯坦福大学医学与工程学院教师委员会的支持。 目标 1 将优化合成水凝胶系统,该系统使用近红外光和生物正交反应来 动态地使凝胶变硬,模拟纤维化,这些水凝胶将用于阐明纤维化的机制。 MuSC 中的机械传感,使用基于 FRET 的力传感器和转基因小鼠模型进行建模。 使用经 ECM 成分修饰的动态硬化凝胶进行体外肌肉老化特征的老化。 单细胞 RNA 测序和机器学习生物信息学方法将识别独特的机械 Aim 3 将开发新的细胞命运调节驱动因素,以降低 MuSC 的再生潜力。 用于 3D 细胞培养的材料,可动态调整粘弹性,以建立第一个人体模型 肌肉“在培养皿中老化”。该项目旨在确定新的治疗目标,以改善肌肉功能 衰老并开发工程平台来研究多种遗传性疾病和不同组织中的衰老。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Matthew Madl其他文献

Christopher Matthew Madl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Matthew Madl', 18)}}的其他基金

Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials
用动态生物材料阐明纤维化对衰老干细胞的影响
  • 批准号:
    10469664
  • 财政年份:
    2021
  • 资助金额:
    $ 12.02万
  • 项目类别:
Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials
用动态生物材料阐明纤维化对衰老干细胞的影响
  • 批准号:
    10740968
  • 财政年份:
    2021
  • 资助金额:
    $ 12.02万
  • 项目类别:
Cell Responsive Hydrogels to Improve Functional Recovery after Spinal Cord Injury
细胞响应水凝胶可改善脊髓损伤后的功能恢复
  • 批准号:
    9232900
  • 财政年份:
    2015
  • 资助金额:
    $ 12.02万
  • 项目类别:
Cell Responsive Hydrogels to Improve Functional Recovery after Spinal Cord Injury
细胞响应水凝胶可改善脊髓损伤后的功能恢复
  • 批准号:
    8909603
  • 财政年份:
    2015
  • 资助金额:
    $ 12.02万
  • 项目类别:

相似国自然基金

SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
  • 批准号:
    82300764
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
  • 批准号:
    82370084
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
  • 批准号:
    82370175
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
  • 批准号:
    82370165
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Biomolecule releasing adhesive for cell-mediated labral repair
用于细胞介导的盂唇修复的生物分子释放粘合剂
  • 批准号:
    10736334
  • 财政年份:
    2023
  • 资助金额:
    $ 12.02万
  • 项目类别:
Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials
用动态生物材料阐明纤维化对衰老干细胞的影响
  • 批准号:
    10469664
  • 财政年份:
    2021
  • 资助金额:
    $ 12.02万
  • 项目类别:
Elucidating Effects of Fibrosis on Aged Stem Cells with Dynamic Biomaterials
用动态生物材料阐明纤维化对衰老干细胞的影响
  • 批准号:
    10740968
  • 财政年份:
    2021
  • 资助金额:
    $ 12.02万
  • 项目类别:
Validation of Smart Masks for Surveillance of COVID-19
用于监测 COVID-19 的智能口罩的验证
  • 批准号:
    10321011
  • 财政年份:
    2020
  • 资助金额:
    $ 12.02万
  • 项目类别:
Adhesive Transient Strain Sensors for Monitoring Post-Cardiotomy Hemodynamics
用于监测心脏切开术后血流动力学的粘附式瞬态应变传感器
  • 批准号:
    10057306
  • 财政年份:
    2020
  • 资助金额:
    $ 12.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了