Understanding and Employing Innate Immune Cell Infiltration into the Brain Following Trauma
了解和利用创伤后先天免疫细胞渗透到大脑中
基本信息
- 批准号:10294222
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2022-10-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAffectAnimal ModelAnti-Inflammatory AgentsAntibodiesArchivesAutomobile DrivingAxonBasic ScienceBehaviorBiomechanicsBlood - brain barrier anatomyBlood VesselsBrainBrain InjuriesBrain regionCaringCellsChronicClinical PathologyCraniocerebral TraumaCytometryDataDevicesDiagnosisDiagnosticDiagnostic ImagingDiffuseEnvironmentEquipmentExcisionExhibitsFamily suidaeFellowshipFosteringGliosisGrowthHeadHealthHistologicHomeHomingHumanImageImmuneIndividualInfiltrationInflammatoryInjuryIntravenousLabelLaboratoriesMagnetic Resonance ImagingMagnetismMeasuresMedical centerMentorsMetalsMethodologyMethodsMicrogliaModelingMyelinNational Institute of Neurological Disorders and StrokeNatural regenerationNerve DegenerationNeuraxisNeurogliaNeuroimmuneNeurologic DeficitNeuronsOxidative StressPathologicPathologyPennsylvaniaPhagocytesPhenotypePlayRecovery of FunctionResearchResolutionResourcesRoleRotationSecondary toSeveritiesSignal TransductionSiteStructureSurfaceTechniquesTechnologyTestingTherapeuticTimeTissue DifferentiationTissuesTrainingTraumaTraumatic Brain InjuryUniversitiesantibody conjugatebehavioral phenotypingcareercell injuryclinically relevantdesigndiagnostic platformexperimental studyimprovedinjury recoveryinnovationmacrophageminimally invasivemonocyteneuroimmunologyneuroinflammationneuronal circuitryneurotoxicnew technologynovelnovel diagnosticsparticleporcine modelpre-clinicalpreservationreceptorskillstissue archivetissue regenerationtraining opportunitytranslational approachtranslational diagnostics
项目摘要
Traumatic brain injury (TBI) affects millions of individuals annually resulting in disrupted neuronal circuitry and chronic neurological deficits. Subsequent neuroinflammation can exacerbate tissue damage and induce neurodegeneration that is many times worse than the original injury. Recent evidence suggests that monocyte- derived macrophages, the primary innate immune cells of the body, can exacerbate pathology or can induce tissue regeneration depending on the timing and extent of their infiltration, the behavioral phenotype they express, and the duration of time spent in the tissue. However, the role that macrophages play in driving secondary injury pathology and regeneration after TBI is largely contested because of incomplete or contradictory findings. Therefore, the purpose of this project is to characterize the contribution of these cells to TBI pathology and to simultaneously track monocyte infiltration in real time to generate a translational, minimally- invasive diagnostic strategy. Additionally, I propose to utilize a high-fidelity preclinical porcine model of closed- head diffuse TBI in order to characterize monocyte infiltration into the brain using magnetic resonance imaging to track magnetically-labeled cells and characterize macrophage behavior in the brain using imaging mass cytometry. Specifically, porcine monocytes, will be exogenously loaded with magnetic microparticles and these microparticle-loaded cells will be administered intravenously after TBI. Thereafter, magnetically labeled cells will be tracked in real time with magnetic resonance imaging (MRI) over time to characterize cell infiltration into the brain. I hypothesize that infiltrating macrophages will localize with micro-pathological features and that tracking macrophage infiltration with magnetic microparticles can be utilized as a novel diagnostic strategy. Importantly, this porcine model of TBI is the most clinically relevant model of TBI in use today, as this model closely replicates human head injury biomechanics. In Aim 1, I will generate, validate, and implement a panel of porcine antibodies to characterize macrophage infiltration, distribution, and phenotype in archived porcine TBI tissue with imaging mass cytometry. In Aim 2, I will synthesize, characterize, and administer magnetically labeled monocytes intravenously to swine in order to track cell infiltration into the brain in real time after TBI. Information gained from this proposal will develop a translationally relevant diagnostic strategy for TBI that could improve treatment and care in affected individuals and inform basic science questions about neuro-immune interactions. Importantly, this research can only be completed at the University of Pennsylvania and VA Medical Center because of unique resources and equipment that is not available anywhere else in the world. During this fellowship, I will have access to an imaging mass cytometer, an archive of over 120 porcine brains, an MRI, equipment for magnetic microparticle fabrication, and the injury device that induces the porcine closed-head diffuse TBI. Together, these resources, experiments, sponsor, collaborators, and institutional environment will cultivate a specialized research niche on neuro-immune interactions that will foster the growth of my developing research career.
创伤性脑损伤 (TBI) 每年影响数百万人,导致神经元回路中断和慢性神经功能障碍。随后的神经炎症会加剧组织损伤并诱发比原始损伤严重许多倍的神经变性。最近的证据表明,单核细胞衍生的巨噬细胞(人体的主要先天免疫细胞)可以加剧病理学或诱导组织再生,具体取决于其浸润的时间和程度、它们表达的行为表型以及在免疫系统中花费的时间。组织。然而,由于研究结果不完整或相互矛盾,巨噬细胞在 TBI 后驱动继发性损伤病理和再生中所发挥的作用在很大程度上存在争议。因此,该项目的目的是表征这些细胞对 TBI 病理学的贡献,并同时实时跟踪单核细胞浸润,以生成转化的微创诊断策略。此外,我建议利用闭头弥漫性 TBI 的高保真临床前猪模型,以便使用磁共振成像来表征单核细胞浸润到大脑中的特征,以跟踪磁性标记的细胞,并使用成像质量细胞计数来表征大脑中巨噬细胞的行为。具体而言,猪单核细胞将外源性地负载磁性微粒,并且这些负载微粒的细胞将在TBI后静脉内施用。此后,随着时间的推移,磁性标记的细胞将通过磁共振成像(MRI)进行实时跟踪,以表征细胞浸润到大脑中的特征。我假设浸润的巨噬细胞将具有微病理特征,并且用磁性微粒跟踪巨噬细胞浸润可以用作一种新的诊断策略。重要的是,这种猪 TBI 模型是当今临床上最相关的 TBI 模型,因为该模型密切复制了人类头部损伤的生物力学。在目标 1 中,我将生成、验证和实施一组猪抗体,以通过成像质量细胞计数来表征存档的猪 TBI 组织中的巨噬细胞浸润、分布和表型。在目标 2 中,我将合成、表征磁性标记的单核细胞并将其静脉注射给猪,以便在 TBI 后实时跟踪细胞浸润到大脑中。从该提案中获得的信息将为 TBI 制定一种转化相关的诊断策略,该策略可以改善受影响个体的治疗和护理,并为有关神经免疫相互作用的基础科学问题提供信息。重要的是,这项研究只能在宾夕法尼亚大学和退伍军人管理局医学中心完成,因为它们拥有世界其他任何地方都没有的独特资源和设备。在这个奖学金期间,我将能够使用成像质量细胞仪、超过 120 个猪脑的档案、MRI、磁性微粒制造设备以及诱发猪闭头弥漫性 TBI 的损伤装置。这些资源、实验、赞助者、合作者和机构环境将共同培育一个关于神经免疫相互作用的专门研究领域,这将促进我的研究事业的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathryn Leigh Wofford其他文献
Kathryn Leigh Wofford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathryn Leigh Wofford', 18)}}的其他基金
Understanding and Controlling Neuro-immune Interactions Following Traumatic Brain Injury
了解和控制创伤性脑损伤后的神经免疫相互作用
- 批准号:
10525982 - 财政年份:2022
- 资助金额:
$ 6.64万 - 项目类别:
Understanding and Controlling Neuro-immune Interactions Following Traumatic Brain Injury
了解和控制创伤性脑损伤后的神经免疫相互作用
- 批准号:
10686307 - 财政年份:2022
- 资助金额:
$ 6.64万 - 项目类别:
Understanding and Employing Innate Immune Cell Infiltration into the Brain Following Trauma
了解和利用创伤后先天免疫细胞渗透到大脑中
- 批准号:
10447179 - 财政年份:2020
- 资助金额:
$ 6.64万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Neural activity-based candidate gene identification to link eating disorders and drug addiction
基于神经活动的候选基因识别将饮食失调和药物成瘾联系起来
- 批准号:
10528062 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Cerebrovascular mitochondria as mediators of neuroinflammation in Alzheimer's Disease
脑血管线粒体作为阿尔茨海默病神经炎症的介质
- 批准号:
10723580 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别:
Concurrent volumetric imaging with multimodal optical systems
多模态光学系统的并行体积成像
- 批准号:
10727499 - 财政年份:2023
- 资助金额:
$ 6.64万 - 项目类别: