Using predictive analytics to tailor care for patients with newly diagnosed type 2 diabetes
使用预测分析为新诊断的 2 型糖尿病患者量身定制护理
基本信息
- 批准号:10286549
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdultAdverse eventAgeAlcohol consumptionAppointmentArtificial IntelligenceBehavioralBody Weight decreasedBody mass indexCaliforniaCaringCharacteristicsClinicalClinical DataComplexComplications of Diabetes MellitusCost SharingDataDiabetes MellitusDiagnosisDiseaseDrug PrescriptionsElectronic Health RecordEthnic OriginExerciseFoundationsFunctional disorderFutureGenderGlucoseGlycosylated hemoglobin AGoalsHealthHealth BenefitHealth Care VisitHealth behaviorHealthcareIndividualIntegrated Delivery of Health CareInterventionKidney DiseasesLife StyleLinkMachine LearningMeasuresMedicalMemoryMetabolicMethodsModelingMyocardial InfarctionNational Institute of Diabetes and Digestive and Kidney DiseasesNewly DiagnosedNon-Insulin-Dependent Diabetes MellitusOnline SystemsOutcomePatient CarePatient riskPatientsPatternPharmaceutical PreparationsPharmacological TreatmentPharmacy facilityPhysiologyPragmatic clinical trialPredictive AnalyticsPreventive screeningRaceResearchRiskSelf CareSelf ManagementSmokingSourceStrokeSystemTelemedicineTimeVisitWorkadvanced analyticsadverse outcomeanalytical methodbaseclinical predictorscohortcomorbiditydata repositorydiabetes controldiabetes managementdisorder controlelectronic datafollow-upglycemic controlimprovedindividual patientinnovationmacrovascular diseasemedication compliancememberpredictive modelingrandom forestresponserisk predictionrisk stratificationsociodemographicsstandard caretooltreatment responsetreatment strategy
项目摘要
PROJECT SUMMARY
Over 1.5 million US adults are diagnosed with type 2 diabetes (T2D) each year. These newly diagnosed
individuals are at increased risk of developing debilitating complications, including renal disease, strokes, and
myocardial infarctions. However, individuals differ widely in their likelihood of experiencing these adverse
outcomes. Individual risk varies based on a complex interplay between pathophysiology, responsiveness to
treatment, and patient capacity for self-management and making sustained lifestyle changes. Early T2D
glycemic control provides a lasting benefit ("metabolic memory"); therefore, strategies that enable the
effective targeting and tailoring of T2D care starting in the initial period after diagnosis may result in
better long-term health outcomes. Implementing individually-tailored care strategies requires substantially
more effective risk prediction tools than are currently available. This R21 proposal seeks to apply advanced
analytic prediction modeling methods to a rich source of electronic health record (EHR)-derived clinical data
(assessed at the time of initial diagnosis and after a year of standard management) to define individual patient
risk profiles. These patient risk profiles will incorporate differences in disease physiology (e.g., reflected in
factors such as age, BMI, hemoglobin A1c at diagnosis), treatment responsiveness, and early self-
management results (e.g., medication adherence, weekly exercise levels, weight loss). This R21 leverages an
established, well-characterized cohort of adults with incident, newly-diagnosed T2D (n=67,575) within Kaiser
Permanente Northern California. We will apply advanced machine learning-based modeling methods (e.g.,
random forests, LASSO, extreme gradient boosting) to complete the following Aims: 1) Develop and validate a
predictive model using EHR-derived patient data available at T2D diagnosis to identify patients at increased
risk of suboptimal glycemic control over the five years following diagnosis and 2) Modify the Aim 1 model by
incorporating clinical predictors captured during the first year following T2D diagnosis. We hypothesize that the
unique information available at these two time points (i.e., initial diagnosis and after one year of standard
treatment) can be used to individualize both initial and subsequent early care for patients with newly diagnosed
T2D. If successful, this project's results can be applied to support targeted T2D care strategies tailored to each
individual's risk of suboptimal five-year glycemic control (and later micro and macrovascular complications)
based on differences in disease physiology, treatment response, and early self-care. This work will form the
foundation for innovative, pragmatic clinical trials that advance our ultimate goal of providing proactive and
effectively tailored early care that results in better long-term health outcomes for adults with T2D.
项目概要
每年有超过 150 万美国成年人被诊断患有 2 型糖尿病 (T2D)。这些新确诊的
个体出现使人衰弱的并发症的风险增加,包括肾病、中风和
心肌梗塞。然而,个体经历这些不利影响的可能性差异很大
结果。个体风险因病理生理学、对疾病的反应性之间复杂的相互作用而异。
治疗、患者自我管理和持续改变生活方式的能力。早期 T2D
血糖控制提供持久的益处(“代谢记忆”);因此,能够实现的策略
在诊断后的初始阶段开始有效的针对性和定制 T2D 护理可能会导致
更好的长期健康结果。实施个性化定制的护理策略需要大量
比目前可用的更有效的风险预测工具。此 R21 提案旨在应用先进的
对电子健康记录 (EHR) 衍生的临床数据的丰富来源进行分析预测建模方法
(在初次诊断时和一年标准管理后进行评估)以确定个体患者
风险概况。这些患者风险概况将包含疾病生理学的差异(例如,反映在
因素(例如年龄、BMI、诊断时的血红蛋白 A1c)、治疗反应和早期自我治疗
管理结果(例如,药物依从性、每周运动水平、体重减轻)。该 R21 利用
Kaiser 内已建立的、特征明确的新诊断 T2D 成人队列 (n=67,575)
北加州永久医院。我们将应用先进的基于机器学习的建模方法(例如,
随机森林、LASSO、极限梯度提升)来完成以下目标:1)开发并验证
预测模型使用 EHR 衍生的 T2D 诊断患者数据来识别患者
诊断后五年内血糖控制不佳的风险,以及 2) 通过以下方式修改目标 1 模型
纳入 T2D 诊断后第一年捕获的临床预测因素。我们假设
在这两个时间点(即初步诊断和一年标准治疗后)可获得的独特信息
治疗)可用于对新诊断的患者进行个体化的初始和后续早期护理
T2D。如果成功,该项目的结果可用于支持针对每个患者量身定制的有针对性的 T2D 护理策略
个人五年血糖控制不佳的风险(以及后来的微血管和大血管并发症)
基于疾病生理学、治疗反应和早期自我护理的差异。这项工作将形成
创新、务实的临床试验的基础,推动我们的最终目标,即提供主动和
有效定制的早期护理可为患有 T2D 的成人带来更好的长期健康结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anjali Gopalan其他文献
Anjali Gopalan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anjali Gopalan', 18)}}的其他基金
The initial care of younger adults with newly diagnosed type 2 diabetes
新诊断 2 型糖尿病的年轻人的初始护理
- 批准号:
10001486 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
The initial care of younger adults with newly diagnosed type 2 diabetes
新诊断 2 型糖尿病的年轻人的初始护理
- 批准号:
9666625 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
The initial care of younger adults with newly diagnosed type 2 diabetes
新诊断 2 型糖尿病的年轻人的初始护理
- 批准号:
10471380 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
The initial care of younger adults with newly diagnosed type 2 diabetes
新诊断 2 型糖尿病的年轻人的初始护理
- 批准号:
10226398 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
The initial care of younger adults with newly diagnosed type 2 diabetes
新诊断 2 型糖尿病的年轻人的初始护理
- 批准号:
10242094 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Teratogenicity assessment of new antiviral drugs using 3D morphogenesis models
使用 3D 形态发生模型评估新型抗病毒药物的致畸性
- 批准号:
10741474 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Predicting and Preventing Adverse Maternal and Child Outcomes of Opioid Use Disorder in Pregnancy
预测和预防妊娠期阿片类药物使用障碍的不良母婴结局
- 批准号:
10683849 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Drug Eluting Silk Fibroin Grafts for Repair of Long Urethral Strictures
药物洗脱丝素蛋白移植物修复长尿道狭窄
- 批准号:
10587176 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
BPCA INNOVATIVE TRIAL DESIGNS AND ASSAY DEVELOPMENTS IN PEDIATRIC THERAPEUTICS
BPCA 儿科治疗的创新试验设计和检测开发
- 批准号:
10936040 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
A non-viral CRISPR-mediated genome editing delivery platform as a potential therapy for neurogenetic diseases
非病毒 CRISPR 介导的基因组编辑传递平台作为神经遗传疾病的潜在疗法
- 批准号:
10739113 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: