Hardwiring Mechanism into Predicting Cancer Phenotypes by Computational Learning
通过计算学习预测癌症表型的硬连线机制
基本信息
- 批准号:10328651
- 负责人:
- 金额:$ 23.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-05 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Few biomarkers derived from genome scale data have translated into improved clinical classification of cancer subtypes, in spite of the wealth of available genome-wide studies and of the corresponding application of numerous statistical algorithms. This widespread shortcoming derives from the pervasive use of "off the shelf" algorithms and machine learning techniques developed for image classification and language processing, which are naïve of the underlying biology of the system. Furthermore, for genome-wide data, the number of samples is often small relative to the number of potential candidate biomarkers, resulting in variable accuracy on independent test data despite high accuracy in the samples used for discovery, which contributes to the failure of clinical biomarkers. This problem - so called "curse of dimensionality" - is further exacerbated by the prohibitive cost of dramatically increasing sample size and by patient stratification into smaller subgroups for personalized and precision medicine. Disease phenotypes arise from distinct and specific perturbations in selected networks and pathways defined by the interactions of their molecular constituents. In cancer, these perturbations may reside in gene regulatory networks topology and state, in cell signaling activity, or in metabolic conditions. We hypothesize that by leveragin such prior biological information on cancer biology we will be able to reduce model complexity and build mechanistically justified predictive models. To pursue this hypothesis, we will develop an analytical framework to embed mechanistic constraints derived from network biology into the statistical learning process itself. Hence, this application will develop a novel suite of statistial learning algorithms that embed (Aim 1) gene expression regulatory networks, (Aim 2) cell signaling activity, and (Aim 3) metabolism to classify breast and prostate cancer. Throughout the study we will work closely with clinical collaborators to ensure that our method improve over and above current predictive and prognostic models. Finally, since in our study we will also generate mechanistic classifiers based on gene expression measurements obtained from clinical assays that are already commercially available (i.e., MammaPrint®, and Decipher®), our innovative models and predictors will be also readily available for clinical translation. Our mechanism-driven classifiers will simultaneously have greater accuracy and interpretability than classifiers developed without regard for the underlying biology of the disease. Furthermore, embedding biological mechanisms in the classifiers will also facilitate the identification of alternative therapeutic targets specific to each cancer subtype, potentially improving patient prognosis and health outcomes. Finally, the substantial curation of molecular pathways and biological networks we will carry on in the project will also provide a powerful resource for futur studies, and the methodologies we will develop will be also applicable to other cancer and other human diseases, like neurodegenerative disorders, hearth disease, and diabetes.
描述(由申请人提供):尽管有大量可用的全基因组研究以及大量统计算法的相应应用,但源自基因组规模数据的生物标志物很少能够转化为改进的癌症亚型临床分类。普遍使用为图像分类和语言处理而开发的“现成”算法和机器学习技术,而这些技术对系统的底层生物学来说是幼稚的。此外,对于全基因组数据,样本数量相对于的数量潜在的候选生物标志物,导致独立测试数据的准确性不同,尽管用于发现的样本具有很高的准确性,这导致了临床生物标志物的失败,这个问题 - 所谓的“维数灾难” - 由于高昂的成本而进一步加剧。显着增加样本量,并将患者分层为更小的亚组,以进行个性化和精准医疗。在癌症中,疾病表型是由其分子成分的相互作用定义的选定网络和路径中的独特和特定的扰动引起的。我们追求的是,通过利用癌症生物学的此类先前生物学信息,我们将能够降低模型的复杂性并建立机械上合理的预测模型。因此,该应用程序将开发一套新颖的统计学习算法,该算法嵌入(目标 1)基因表达调控网络,(目标 2)细胞信号传导活动。 (目标 3)代谢对乳腺癌和前列腺癌进行分类。在整个研究过程中,我们将与临床密切合作,以确保我们的预测方法优于当前和预后模型。最后,由于我们研究的合作者,我们还将生成机械分类器。基于从已经商业化的临床检测(即 MammaPrint® 和 Decipher®)获得的基因表达测量,我们的创新模型和预测器也将随时可用于临床转化。比不考虑疾病的基础生物学而开发的分类器具有更高的准确性和可解释性。此外,在分类器中嵌入生物学机制还将有助于识别针对每种癌症亚型的替代治疗靶点,从而可能改善患者的预后和健康结果。我们将在该项目中进行的分子途径和生物网络的实质性管理也将为未来的研究提供强大的资源,我们将开发的方法也将适用于其他癌症和其他人类疾病,如神经退行性疾病、心脏病,和糖尿病。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthesizer: Expediting synthesis studies from context-free data with information retrieval techniques.
合成器:利用信息检索技术加速上下文无关数据的合成研究。
- DOI:10.1371/journal.pone.0175860
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:Gandy,LisaM;Gumm,Jordan;Fertig,Benjamin;Thessen,Anne;Kennish,MichaelJ;Chavan,Sameer;Marchionni,Luigi;Xia,Xiaoxin;Shankrit,Shambhavi;Fertig,ElanaJ
- 通讯作者:Fertig,ElanaJ
Donor-derived acute myeloid leukemia in solid organ transplantation.
- DOI:10.1111/ajt.17174
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Using biological constraints to improve prediction in precision oncology.
- DOI:10.1016/j.isci.2023.106108
- 发表时间:2023-03-17
- 期刊:
- 影响因子:5.8
- 作者:Omar, Mohamed;Dinalankara, Wikum;Mulder, Lotte;Coady, Tendai;Zanettini, Claudio;Imada, Eddie Luidy;Younes, Laurent;Geman, Donald;Marchionni, Luigi
- 通讯作者:Marchionni, Luigi
RNA-sequencing highlights differential regulated pathways involved in cell cycle and inflammation in orbitofacial neurofibromas.
- DOI:10.1111/bpa.13007
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Imada EL;Strianese D;Edward DP;alThaqib R;Price A;Arnold A;Al-Hussain H;Marchionni L;Rodriguez FJ
- 通讯作者:Rodriguez FJ
MicroRNA expression profiling of Xp11 renal cell carcinoma.
- DOI:10.1016/j.humpath.2017.03.011
- 发表时间:2017-09
- 期刊:
- 影响因子:3.3
- 作者:Marchionni L;Hayashi M;Guida E;Ooki A;Munari E;Jabboure FJ;Dinalankara W;Raza A;Netto GJ;Hoque MO;Argani P
- 通讯作者:Argani P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luigi Marchionni其他文献
Luigi Marchionni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luigi Marchionni', 18)}}的其他基金
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HIV通过细胞表面类CD4结构样分子进入精子的分子机制研究
- 批准号:82302510
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PDKs-PDHE1α轴在罗非鱼葡萄糖进入TCA循环供能过程中的调控机制研究
- 批准号:32303018
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SNARE蛋白syntaxin6限制新型冠状病毒进入的机制
- 批准号:32370172
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Investigations into the antibacterial mechanism of action of cannabidiol
大麻二酚抗菌作用机制的研究
- 批准号:
DP240102291 - 财政年份:2024
- 资助金额:
$ 23.49万 - 项目类别:
Discovery Projects
Elucidation of the pathogenic mechanism of de-differentiation into pancreatic adenocytes in diabetic pancreatic beta cells.
阐明糖尿病胰腺β细胞去分化为胰腺腺细胞的致病机制。
- 批准号:
23K07990 - 财政年份:2023
- 资助金额:
$ 23.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidating the mechanism of hydrogen entry into metals under corrosive environment using an ultrasensitive hydrogen visualization system
使用超灵敏氢可视化系统阐明腐蚀环境下氢进入金属的机制
- 批准号:
23K13570 - 财政年份:2023
- 资助金额:
$ 23.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Creation of a curved cilia mechanism based on oviduct-like elastic oscillations that realizes super-adaptive propulsion into lumens with various shapes
创建基于类输卵管弹性振荡的弯曲纤毛机制,实现对各种形状管腔的超自适应推进
- 批准号:
23K17736 - 财政年份:2023
- 资助金额:
$ 23.49万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 23.49万 - 项目类别: