Understanding druggable drivers of meningioma tumorigenesis
了解脑膜瘤肿瘤发生的药物驱动因素
基本信息
- 批准号:10275399
- 负责人:
- 金额:$ 51.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAfrican AmericanAutomobile DrivingBiochemicalBiochemistryBiologyBrain NeoplasmsCDK4 geneCRISPR interferenceCRISPR screenCaliforniaCell CycleCell Cycle InhibitionCell LineCell ProliferationCellsCerebrumChIP-seqClinicalClinical ResearchClinical TrialsCoculture TechniquesCollaborationsCopy Number PolymorphismCyclin-Dependent Kinase Inhibitor 2ADNA ProbesDNA methylation profilingDataDevelopmental Therapeutics ProgramDiagnosisDrug KineticsElderlyEnhancersEpigenetic ProcessFoundationsFutureGeneticGoalsGrowthHandHistologicHistologyHomeostasisHong KongHumanIn VitroIntracranial NeoplasmsInvestigationLightMalignant Intracranial NeoplasmMalignant NeoplasmsMeningealMeningeal NeoplasmsModelingMolecularMolecular ProfilingMorbidity - disease rateMusNeuraxisNeurologicNormal tissue morphologyOncogenicOrganoidsOutcomePathway interactionsPatientsPharmacodynamicsPharmacological TreatmentPharmacologyPre-Clinical ModelProcessReagentRecurrenceResearchResistanceSamplingSan FranciscoSignal TransductionStudy modelsSubgroupTP53 geneTestingTherapeuticTissuesTreatment outcomeTumor TissueUSF1 geneUniversitiesWomanWorkXenograft procedurebasecohortexperiencefollow-upgenome-wideimprovedinhibitor/antagonistinnovationinsightmeningiomamortalitymouse modelneuron developmentnew therapeutic targetnovelnovel therapeuticspatient derived xenograft modelpharmacokinetics and pharmacodynamicspre-clinicalpreclinical studypredict clinical outcomepreventpromoterresistance mechanismresponse biomarkersuccesstargeted treatmenttranscription factortranscriptome sequencingtumortumor growthtumorigenesis
项目摘要
Project summary
The meningeal lining of the central nervous system is critical for neuronal development and homeostasis.
However, meningeal tumors account for the majority of primary intracranial cancers. Meningiomas are
overwhelmingly diagnosed in older adults, women, and African American patients, all of which are
underrepresented in clinical trials. Thus, there are no effective pharmacologic treatments for meningioma
patients. New therapies have been further encumbered by limited understanding of meningioma biology and a
lack of tractable models for preclinical meningioma investigation. To address these problems, we performed
multiplatform molecular profiling on 565 human meningiomas from patients with comprehensive follow-up data
to discover that meningioma is comprised of 3 epigenetic subgroups with distinct clinical outcomes. Moreover,
we recently developed novel cerebral organoid and patient derived xenograft models for each subgroup of
meningiomas. Our preliminary data presented in this application reveal convergent genetic mechanisms
misactivating the cell cycle at the level of CDK6 in the subgroup of meningiomas with the worst clinical outcomes.
Our central hypothesis is that CDK6 is required for meningioma growth, and that clinical CDK4/6 inhibitors will
show activity in preclinical meningioma models. To test this hypothesis, we will define the efficacy and biomarkers
of response to CDK4/6 inhibitors in meningioma, define the molecular mechanisms underlying CDK6
misactivation in meningiomas, and identify pathways mitigating resistance to CDK4/6 blockade in meningioma.
Our proposal will integrate human samples, organoid models of meningioma tumorigenesis, and understudied
patient derived xenografts with CRISPR interference and pharmacology. This approach is based on the premise
that improving treatments for meningioma patients depends on our ability to identify and target key molecular
mechanisms driving meningioma cell proliferation. We know surprisingly little about how meningiomas develop,
and almost nothing about how to block the molecular mechanisms underlying meningioma growth. Though the
short-term objective of this proposal is to broadly improve our understanding of meningioma cell proliferation, a
long-term goal of this research is to understand this process well enough to develop targeted therapeutic
strategies that will improve treatments and outcomes for meningioma patients. Thus, this work will not only
explain how meningiomas grow, but will also elucidate druggable mechanisms and establish preclinical
foundation to support new clinical trials for meningioma patients.
项目摘要
中枢神经系统的脑膜内膜对于神经元发展和体内平衡至关重要。
但是,脑膜肿瘤占大多数原发性颅内癌症。脑膜瘤是
在老年人,妇女和非裔美国人患者中被压倒性地被诊断出来
在临床试验中的代表性不足。因此,没有有效的脑膜瘤药理治疗
患者。对脑膜瘤生物学和A
缺乏用于临床前脑膜瘤研究的可疗法模型。为了解决这些问题,我们执行了
来自具有全面随访数据的患者的565人脑膜瘤的乘数分子分析
发现脑膜瘤由3个具有不同临床结果的表观遗传亚组组成。而且,
我们最近为每个亚组开发了新型的大脑器官和患者衍生的异种移植模型
脑膜瘤。我们在本应用程序中提供的初步数据揭示了收敛的遗传机制
在脑膜瘤亚组中误导了CDK6水平的细胞周期,其临床结果最差。
我们的中心假设是脑膜瘤生长需要CDK6,临床CDK4/6抑制剂将
在临床前脑膜瘤模型中显示活性。为了检验这一假设,我们将定义功效和生物标志物
对脑膜瘤中CDK4/6抑制剂的反应,定义了CDK6的分子机制
脑膜瘤中的误导,并确定途径减轻脑膜瘤中CDK4/6封锁的抗性。
我们的建议将整合人类样品,脑膜瘤肿瘤发生的器官模型,并研究了
患者衍生出具有CRISPR干扰和药理学的异种移植物。这种方法基于前提
改善脑膜瘤患者的治疗方法取决于我们识别和靶向关键分子的能力
驱动脑膜瘤细胞增殖的机制。我们对脑膜瘤的发展方式一无所知,
几乎没有关于如何阻止脑膜瘤生长的分子机制。虽然
该提案的短期目标是广泛地提高我们对脑膜瘤细胞增殖的理解,一个
这项研究的长期目标是足够理解这一过程,以开发有针对性的治疗性
将改善脑膜瘤患者治疗和结果的策略。因此,这项工作不仅会
解释脑膜瘤如何生长,但也将阐明可药物的机制并建立临床前
支持脑膜瘤患者的新临床试验的基金会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David R Raleigh其他文献
David R Raleigh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David R Raleigh', 18)}}的其他基金
Biochemical mechanisms of Hedgehog signal transduction through primary cilia
Hedgehog通过初级纤毛信号转导的生化机制
- 批准号:
10447446 - 财政年份:2022
- 资助金额:
$ 51.74万 - 项目类别:
Biochemical mechanisms of Hedgehog signal transduction through primary cilia
Hedgehog通过初级纤毛信号转导的生化机制
- 批准号:
10570940 - 财政年份:2022
- 资助金额:
$ 51.74万 - 项目类别:
Understanding druggable drivers of meningioma tumorigenesis
了解脑膜瘤肿瘤发生的药物驱动因素
- 批准号:
10456201 - 财政年份:2021
- 资助金额:
$ 51.74万 - 项目类别:
Understanding druggable drivers of meningioma tumorigenesis
了解脑膜瘤肿瘤发生的药物驱动因素
- 批准号:
10663243 - 财政年份:2021
- 资助金额:
$ 51.74万 - 项目类别:
Mechanisms of Hedgehog signaling in glioblastoma
胶质母细胞瘤中 Hedgehog 信号传导机制
- 批准号:
10373062 - 财政年份:2021
- 资助金额:
$ 51.74万 - 项目类别:
Mechanisms of Hedgehog signaling in glioblastoma
胶质母细胞瘤中 Hedgehog 信号传导机制
- 批准号:
10208542 - 财政年份:2021
- 资助金额:
$ 51.74万 - 项目类别:
Mechanisms of Hedgehog signaling in glioblastoma
胶质母细胞瘤中 Hedgehog 信号传导机制
- 批准号:
10608976 - 财政年份:2021
- 资助金额:
$ 51.74万 - 项目类别:
Understanding How Ciliary Hedgehog Signaling Causes Medulloblastoma
了解睫状刺猬信号如何导致髓母细胞瘤
- 批准号:
10196981 - 财政年份:2017
- 资助金额:
$ 51.74万 - 项目类别:
相似海外基金
Mitigating the Effects of Structural Racism on Chronic Kidney Disease Disparities among African Americans
减轻结构性种族主义对非裔美国人慢性肾病差异的影响
- 批准号:
10742680 - 财政年份:2023
- 资助金额:
$ 51.74万 - 项目类别:
Transcriptome and spatial analyses of tumor environment in addressing colorectal cancer racial and ethnical disparities
肿瘤环境的转录组和空间分析在解决结直肠癌种族和民族差异方面的作用
- 批准号:
10743201 - 财政年份:2023
- 资助金额:
$ 51.74万 - 项目类别:
Investigating mitochondrial dysfunction in high-risk prostate cancer
研究高危前列腺癌中的线粒体功能障碍
- 批准号:
10570345 - 财政年份:2023
- 资助金额:
$ 51.74万 - 项目类别:
Decoding tumor metabolic and immunologic interactions driving racial disparity in African American patients with bladder cancer.
解码肿瘤代谢和免疫相互作用导致非裔美国膀胱癌患者的种族差异。
- 批准号:
10718787 - 财政年份:2023
- 资助金额:
$ 51.74万 - 项目类别:
Health Equity in Emergency Trauma Care: Analysis of disparities in the pre-hospital emergency trauma care system
紧急创伤护理中的健康公平:院前紧急创伤护理系统的差异分析
- 批准号:
10594244 - 财政年份:2023
- 资助金额:
$ 51.74万 - 项目类别: