An integrated human organ-on-chip ultrasensitive miRNA detection platform for novel biomarker discovery
用于新型生物标志物发现的集成人体器官芯片超灵敏 miRNA 检测平台
基本信息
- 批准号:10226151
- 负责人:
- 金额:$ 38.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelBenchmarkingBiological AssayBiological MarkersBiosensing TechniquesBiosensorBlood CirculationBlood specimenCardiovascular DiseasesCell Culture TechniquesCellsClinicalCoronary ArteriosclerosisCulture MediaDetectionDevelopmentDevicesDiagnosticDiseaseDisease modelDistressEventFingerprintGlucoseGoalsHealthHeartHematological DiseaseHistologicHumanHuman EngineeringHypoxiaIndividualIschemiaLifeLigationLinkLiquid substanceMalignant NeoplasmsMethodsMicroRNAsMicrofluidic MicrochipsMicrofluidicsModelingMonitorMyocardialMyocardial InfarctionMyocardial tissueMyocardiumOxidative StressPatientsPerformancePhysiologicalPreparationPropertyProtocols documentationRNAReperfusion InjuryReperfusion TherapyRoleSamplingSystemTechniquesTechnologyTestingTimeTissue EngineeringTissue ModelTissue SampleTissuesValidationVentricularbasebiomarker developmentbiomarker discoverybiomarker signaturecirculating microRNAclinical applicationclinical translationclinically relevantconditioningdeep sequencingdetection methoddetection platformdisease phenotypedrug discoveryexosomeexperimental studyhuman modelhuman subjecthuman tissueinduced pluripotent stem cellinnovationischemic conditioningmiRNA expression profilingmicroRNA biomarkersnormoxianovelnovel markernovel strategiesorgan on a chippercutaneous coronary interventionpersonalized medicinepotential biomarkerpredicting responseprognosticreal time monitoringsensorspecific biomarkerstool
项目摘要
Abstract
Circulating miRNAs have proposed as specific biomarkers of disease states, including some of the most
prevailing ones such as cardiovascular diseases and cancer. However using miRNAs as biomarkers is very
challenging despite recent advances in high-throughput miRNA profiling. Various detection technologies,
protocols, ligation and extraction/purification methods have led to varying miRNA profiling results of cells and
biofluids under different conditions. Most importantly, all require days long sample-to-answer assay times, thus
ruling them out for detection and monitoring of urgent, life threatening conditions such as myocardial infarction
(MI). A rapid real-time, PCR-free miRNA-profiling device would be exceedingly valuable for precision,
personalized medicine in years to come. However, it is very difficult to start even developing such a platform
because of the limitations in testing models. Animal models often fail to predict responses in humans; and studies
of human subjects do not readily allow for precise control over the disease events or temporal correlation of the
disease state and biomarker expression dynamics. To address this challenge, in this study, we will develop an
organ-on-a-chip device with an integrated attomolar (aM)-level miRNA sensing capability, which we will use for
optimizing real-time monitoring of fluctuations in multiple miRNAs for novel biomarker discovery. As an
immediate application, we will start with a human myocardium-on-chip (MoC) as a clinically relevant model and
imitate the course of a heart attack. We hypothesize that using the MoC with ultrasensitive miRNA detection, we
will discover a unique signature that indicates the onset of reperfusion injury during MI treatment. Finally, we will
test the sensor device and the miRNA signature using clinical blood samples. Our microfluidic organ-on-a-chip
platform will consist of four basic components: 1) the tissue engineered human MoC from human induced
pluripotent stem cells (hiPSCs), 2) the exosome lysing unit, 3) the concentration unit for the lysed RNAs and 4)
the detection unit for the miRNAs. In Aim 1, we will couple these components into a fully integrated microfluidic
platform. First we will validate the clinical relevance of the MoC model by comparing with human tissue and blood
samples. Then we will characterize and optimize the performance of a novel miRNA detection biosensor using
MoC and benchmark it against established miRNA analysis techniques. In Aim 2 we will focus on multiplexing
the sensing approach for the real-time detection of a panel of miRNAs, and 1) use the MoC to discover a miRNA
signature to be used as a novel biomarker that captures the RI onset, as well as 2) to optimize the multiplexed
sensor for faster clinical translation. In Aim 3 we will determine the diagnostic and prognostic capabilities of the
novel biosensor and miRNA biomarker signature we developed in Aims 1 and 2 using the MoC model, with
clinical samples from MI patients. Our long-term goal is to utilize this integrated platform to study exosomes and
their RNA content to advance current understanding of their role in human health and to determine their potential
as biomarkers for disease states.
抽象的
循环 miRNA 已被提议作为疾病状态的特定生物标志物,包括一些最常见的疾病状态。
心血管疾病、癌症等常见疾病。然而,使用 miRNA 作为生物标志物是非常困难的。
尽管高通量 miRNA 分析最近取得了进展,但仍具有挑战性。各种检测技术,
方案、连接和提取/纯化方法导致细胞和细胞的 miRNA 分析结果不同
不同条件下的生物体液。最重要的是,所有这些都需要数天的样本到结果分析时间,因此
排除它们来检测和监测紧急的、危及生命的疾病,例如心肌梗死
(MI)。快速实时、免 PCR 的 miRNA 分析设备对于精确、
未来几年的个性化医疗。然而,即使是开发这样的平台,也很难开始
由于测试模型的限制。动物模型通常无法预测人类的反应;和研究
人类受试者的数据不容易精确控制疾病事件或疾病的时间相关性
疾病状态和生物标志物表达动态。为了应对这一挑战,在本研究中,我们将开发一种
具有集成阿摩尔 (aM) 级 miRNA 传感功能的器官芯片设备,我们将使用它
优化多个 miRNA 波动的实时监测,以发现新的生物标志物。作为一个
立即应用,我们将从人类芯片上心肌(MoC)作为临床相关模型开始,
模仿心脏病发作的过程。我们假设使用具有超灵敏 miRNA 检测功能的 MoC,我们
将发现一个独特的特征,表明心肌梗死治疗期间再灌注损伤的发生。最后,我们将
使用临床血液样本测试传感器设备和 miRNA 签名。我们的微流控芯片器官
该平台将由四个基本组成部分组成:1)来自人类诱导的组织工程人类MoC
多能干细胞 (hiPSC),2) 外泌体裂解单位,3) 裂解 RNA 的浓度单位,4)
miRNA 的检测单元。在目标 1 中,我们将把这些组件耦合到一个完全集成的微流体中
平台。首先,我们将通过与人体组织和血液进行比较来验证 MoC 模型的临床相关性
样品。然后我们将使用以下方法表征和优化新型 miRNA 检测生物传感器的性能
MoC 并将其与已建立的 miRNA 分析技术进行基准测试。在目标 2 中,我们将重点关注多路复用
用于实时检测一组 miRNA 的传感方法,以及 1) 使用 MoC 发现 miRNA
签名用作捕获 RI 起始的新型生物标志物,以及 2) 优化多重检测
传感器可实现更快的临床转化。在目标 3 中,我们将确定诊断和预后能力
我们使用 MoC 模型在目标 1 和 2 中开发了新型生物传感器和 miRNA 生物标志物特征,其中
来自 MI 患者的临床样本。我们的长期目标是利用这个集成平台来研究外泌体和
它们的 RNA 含量可促进目前对其在人类健康中的作用的了解并确定其潜力
作为疾病状态的生物标志物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pinar Zorlutuna其他文献
Pinar Zorlutuna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pinar Zorlutuna', 18)}}的其他基金
Engineered hybrid aging model for disease progression
用于疾病进展的工程混合衰老模型
- 批准号:
10608767 - 财政年份:2023
- 资助金额:
$ 38.57万 - 项目类别:
An Engineered Tissue Model of Aged Mammary Microenvironment
衰老乳腺微环境的工程组织模型
- 批准号:
10378470 - 财政年份:2019
- 资助金额:
$ 38.57万 - 项目类别:
An Engineered Tissue Model of Aged Mammary Microenvironment
衰老乳腺微环境的工程组织模型
- 批准号:
9920718 - 财政年份:2019
- 资助金额:
$ 38.57万 - 项目类别:
An Engineered Tissue Model of Aged Mammary Microenvironment
衰老乳腺微环境的工程组织模型
- 批准号:
10090595 - 财政年份:2019
- 资助金额:
$ 38.57万 - 项目类别:
An integrated human organ-on-chip ultrasensitive miRNA detection platform for novel biomarker discovery
用于新型生物标志物发现的集成人体器官芯片超灵敏 miRNA 检测平台
- 批准号:
10458616 - 财政年份:2018
- 资助金额:
$ 38.57万 - 项目类别:
An integrated human organ-on-chip ultrasensitive miRNA detection platform for novel biomarker discovery
用于新型生物标志物发现的集成人体器官芯片超灵敏 miRNA 检测平台
- 批准号:
9769864 - 财政年份:2018
- 资助金额:
$ 38.57万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A suite of conditional mouse models for secretome labeling
一套用于分泌蛋白组标记的条件小鼠模型
- 批准号:
10640784 - 财政年份:2023
- 资助金额:
$ 38.57万 - 项目类别:
Biomarker Discovery in Portopulmonary Hypertension
门脉性肺动脉高压的生物标志物发现
- 批准号:
10663708 - 财政年份:2023
- 资助金额:
$ 38.57万 - 项目类别:
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
- 批准号:
10603408 - 财政年份:2023
- 资助金额:
$ 38.57万 - 项目类别:
Metal-free, genetically encoded reporters for calcium recording with MRI
用于 MRI 钙记录的无金属基因编码报告基因
- 批准号:
10660042 - 财政年份:2023
- 资助金额:
$ 38.57万 - 项目类别: