Next-Generation Cardiovascular MRI powered by Artificial Intelligence
由人工智能驱动的下一代心血管 MRI
基本信息
- 批准号:10226541
- 负责人:
- 金额:$ 18.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D MRIAccelerationAddressAdoptedAdoptionAdultAgreementArchitectureArtificial IntelligenceCardiacCardiovascular systemChildhoodCine Magnetic Resonance ImagingClassificationClinicalCommunity HospitalsComputer Vision SystemsComputer softwareDataDatabasesDigital Imaging and Communications in MedicineEchocardiographyGadoliniumGenerationsGoalsHourHumanImageImage AnalysisImage EnhancementInstitutionInterventionLearningMagnetic Resonance ImagingPatientsPatternPerformancePerfusionPhasePhysiciansProcessPrognosisProtocols documentationReadingReportingResourcesSamplingScanningSeriesSpeedTechnologyTestingTimeTrainingUnited States National Institutes of Healthbasecardiovascular imagingclinical practiceclinical translationcomputer scienceconvolutional neural networkcostdata spacedeep learningempoweredexperimental studyheart imaginghigh rewardhigh riskimage processingimage reconstructionimaging Segmentationimaging facilitiesinterestnetwork architectureneural networkneural network architecturenext generationnovelreconstructionresponserisk predictionroutine practicesignal processingsingle photon emission computed tomographysuccess
项目摘要
Project Summary/Abstract: Despite the accuracy and versatility of cardiovascular MRI, its footprint is only
1% among cardiac imaging tests (SPECT, echocardiography, CT, MRI) in the US. While there are several
factors such as referral patterns favoring SPECT and echocardiography among cardiologists that account for
low utilization, the two addressable obstacles that preclude widespread adoption are lengthy scan time
(imaging facility operational cost) and reading (physician cost). These obstacles must be addressed for
community hospitals with limited resources to adopt cardiovascular MRI into clinical routine practice.
While compressed sensing (CS), since its introduction into the MRI world in 2007, has led to highly-accelerated
cardiovascular MRI acquisitions, the subsequent image reconstruction remains too slow (> 5 min for 2D time
series, > 1 hour for 3D time series) for clinical translation (unmet need 1). Downstream, image analysis for
cardiovascular MRI is notoriously labor intensive (e.g. 30- to 60-min) and limited (“circles” at two cardiac
phases for cine MRI, whereas perfusion and late gadolinium-enhanced (LGE) images are evaluated visually),
for what is essentially a basic computer vision task (unmet need 2). In direct response, we will address these
two unmet needs and unlock the enormous potential of CMR using deep learning (DL).
DL applications have exploded since advancements in optimization and GPU hardware. While several recent
studies have applied neural networks such as convolutional neural networks (CNNs), U-Nets, and Generative
Adversarial Nets (GANs) for reconstruction and segmentation, no study has implemented an inline end-to-end
pipeline that receives raw k-space from the MRI scanner and delivers both reconstructed images and fully
processed images automatically with high speed (< 1 min). The objectives of this study are: a) developing a
network for image reconstruction with maximal acceleration (aim 1), (b) developing a network for image
processing tasks (aim 2), and c) developing an integrated, end-to-end network that does both (aim 3). By
developing an architecture that can simultaneously learn maximal acceleration, fine tune end-to-end
performance, and perform reconstruction/inference using feed-forward networks, we anticipate a disruptive
technology that will lead to a paradigm shift in cardiovascular MRI and increase its footprint in community
hospitals. This 2-year study is doable because of the requisite database of raw k-space (not derived from
DICOM) data (N = 617) and annotated cardiac MR images (N=3,021) from over 3,000 patients existing at our
institution. Success of this proposal will deliver a disruptive technology that has potential to cause a paradigm
shift in cardiovascular MRI and enable widespread adoption of cardiovascular MRI into clinical routine practice.
项目摘要/摘要:尽管心血管 MRI 具有准确性和多功能性,但其占地面积仅
在美国,心脏影像检查(SPECT、超声心动图、CT、MRI)的比例为 1%,而有几种。
心脏病专家中倾向于 SPECT 和超声心动图的转诊模式等因素
利用率低,阻碍广泛采用的两个可解决的障碍是扫描时间过长
(成像设施运营成本)和阅读(医生成本)必须解决这些障碍。
资源有限的社区医院将心血管 MRI 纳入临床常规实践。
而压缩感知 (CS) 自 2007 年引入 MRI 领域以来,已经带来了高度加速的
心血管 MRI 采集,随后的图像重建仍然太慢(2D 时间 > 5 分钟)
系列,> 1 小时(3D 时间序列)用于临床翻译(未满足的需求 1)。
心血管 MRI 众所周知是劳动密集型(例如 30 至 60 分钟)且有限(两个心脏的“圆圈”)
电影 MRI 的阶段,而灌注和晚期钆增强 (LGE) 图像则通过视觉评估),
对于本质上是基本的计算机视觉任务(未满足的需求 2),我们将解决这些问题。
两个未满足的需求,并利用深度学习 (DL) 释放 CMR 的巨大潜力。
随着优化和 GPU 硬件的进步,深度学习应用程序呈爆炸式增长,而最近有一些应用程序出现了爆炸式增长。
研究已经应用了神经网络,例如卷积神经网络(CNN)、U-Nets 和生成式网络
用于重建和分割的对抗网络(GAN),没有研究实现内联端到端
从 MRI 扫描仪接收原始 k 空间并提供重建图像和完整图像的管道
高速自动处理图像(< 1 分钟) 本研究的目标是: a) 开发一个
以最大加速度进行图像重建的网络(目标 1),(b) 开发图像网络
处理任务(目标 2),以及 c) 开发一个能够同时完成这两项任务的集成端到端网络(目标 3)。
开发一种可以同时学习最大加速度、端到端微调的架构
性能,并使用前馈网络执行重建/推理,我们预计会出现破坏性的
技术将导致心血管 MRI 范式转变并增加其在社区中的足迹
这项为期 2 年的研究是可行的,因为需要原始 k 空间数据库(不是源自于医院)。
DICOM)数据(N = 617)和带注释的心脏 MR 图像(N = 3,021)来自我们医院现有的 3,000 多名患者
该提案的成功将带来一种颠覆性技术,有可能成为一种范例。
心血管 MRI 的转变,并使心血管 MRI 广泛应用于临床常规实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Strides Cossairt其他文献
Oliver Strides Cossairt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oliver Strides Cossairt', 18)}}的其他基金
Revealing neural circuits underlying zebrafish behavior using mesoscopic light field microscopy
使用介观光场显微镜揭示斑马鱼行为背后的神经回路
- 批准号:
10300922 - 财政年份:2021
- 资助金额:
$ 18.98万 - 项目类别:
相似国自然基金
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
- 批准号:82071991
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
- 批准号:81801139
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
4D PC-MRI血流动力学参数与主动脉夹层假腔血栓化的关系及模拟预测研究
- 批准号:81770474
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
基于4D血流MRI成像的左心房室流场变化介导的炎症反应在房颤心肌纤维化中的始动作用及机制研究
- 批准号:81601462
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
- 批准号:
10571411 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别:
Arrhythmia-resolved 5D Flow MRI in Atrial Fibrillation and Stroke
消除心律失常的 5D Flow MRI 在心房颤动和中风中的应用
- 批准号:
10761709 - 财政年份:2022
- 资助金额:
$ 18.98万 - 项目类别:
Arrhythmia-resolved 5D Flow MRI in Atrial Fibrillation and Stroke
消除心律失常的 5D Flow MRI 在心房颤动和中风中的应用
- 批准号:
10538265 - 财政年份:2022
- 资助金额:
$ 18.98万 - 项目类别: