Multiplexed Imaging in the Near Infrared with Indium Phosphide Quantum Shells
使用磷化铟量子壳进行近红外多重成像
基本信息
- 批准号:10224242
- 负责人:
- 金额:$ 46.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAnimalsAreaArsenicBenchmarkingBindingBiodistributionBiologicalBiological AssayBiological MarkersBiological ProcessBiomedical ResearchBlood CirculationBlood Circulation TimeBostonCadmiumCell surfaceChemistryColorCommunitiesContrast MediaDevelopmentDevelopment PlansDiagnosticDyesEffectivenessElementsEnsureEquipmentEventFluorescenceFormulationFutureGeometryGoldHealthHeavy MetalsHemoglobinImageImage EnhancementIn VitroInvestmentsLeadLightLipidsMalignant NeoplasmsMercuryMethodsMicellesMicroscopyMolecular ProbesMonitorNonionizing RadiationOperative Surgical ProceduresOpticsPenetrationPerformancePhotonsPilot ProjectsPropertyProteinsProtocols documentationQuantum DotsResolutionResourcesSemiconductorsSkinStructureTeacher Professional DevelopmentTechniquesTestingTimeTissue ModelTissuesToxic effectTumor MarkersUniversitiesVisualizationWaterabsorptionanimal imagingbasebioimagingbiomaterial compatibilitycancer imagingcell typeclinical optical imagingcontrast imagingcostcytotoxicitydesignexperienceexperimental studyfaculty mentorfluorescence imagingfluorophoreimaging agentimaging modalityimaging probeimaging studyimprovedin vivoin vivo Modelin vivo imagingindium phosphideinnovationmalignant breast neoplasmmillimetermolecular imagingmolecular phenotypemouse modelmultiphoton imagingmultiphoton microscopymultiplexed imagingnanomaterialsnanoparticlenovelparticlepre-clinicalquantumsensorsoft tissuesuccesstargeted imagingtechnology developmenttissue phantomtooltumortumor growthtumor xenograft
项目摘要
Project Summary/Abstract
Fluorescence has significant potential for biomedical imaging applications because of the relatively low cost of
imaging equipment, the nominal toxicity of non-ionizing radiation (i.e., light), the potential for molecular imaging
using target-specific contrast agents, and the prospect of multiplexed imaging using discretely colored
fluorophores. Molecules common in biological tissues including lipids, water, and hemoglobin scatter and absorb
light, rendering tissue opaque to visible wavelengths, but longer, near infrared (NIR) wavelengths penetrate
deeper, giving us an optical window into the body. To see inside a tissue, we require bright, photostable, highly
absorbing, NIR fluorophores. Despite exceptional results in vitro, we can improve on the in vivo performance of
organic dyes, fluorescent proteins, and traditional semiconductor quantum dots (QDs), which are typically dim,
toxic, not red enough, or all of the above. We have created a material that literally flips a quantum dot inside out
to make a quantum shell (QS) comprised of non-toxic elements (In, P, Se, Zn, S) that is tunable from 500 – 900
nm. Because InP absorbs more efficiently than CdSe, these materials are brighter than previous materials with
a smaller size, while emitting in the NIR and reducing toxicity. We propose a technology development plan that
would enable us to refine the structural and optical properties of these particles to generate a brightness-matched
palette of fluorophores to enable multiplexing in deep tissue. We will deploy these particles in widefield imaging
and multiphoton microscopy (MPM) experiments to first objectively quantify and then demonstrate the optical
superiority of these probes. After evaluating the in vitro and in vivo biocompatibility of various formulations of
water-soluble QSs, we will use targeted and untargeted QSs together for dual probe imaging of cell surface
biomarkers to selectively highlight a xenograft tumor. In addition to widefield imaging, we will objectively evaluate
the MPM contrast of the QSs. The exceptionally high absorptivity of the particles ensures high two- and three-
photon action cross-sections. We will quantitatively compare the brightness and tissue penetration depth of the
InP QSs against other red and NIR fluorophores. Synthetic iterations to the particles will use the unique particle
geometry to generate QSs with varying emission colors, but the same brightness. We will compare zwitterionic
coatings to our benchmark lipid-PEG coating to try to enhance imaging contrast through longer circulation time
and more efficient targeting. The success of this project will yield a rainbow of non-toxic, NIR fluorophores that
can be used collectively could transform preclinical molecular imaging.
项目摘要/摘要
荧光具有生物医学成像应用的显着潜力,因为
成像设备,非电离辐射的标称毒性(即光),分子成像的潜力
使用靶标特异性对比剂,以及使用离散颜色的多路复用成像的前景
荧光团。生物组织中常见的分子,包括脂质,水和血红蛋白散射并吸收
光线,使组织不透明到可见的波长,但较长的红外(NIR)波长穿透了
更深入,为我们提供一个光学窗口进入身体。要在组织内部看到,我们需要明亮,光稳定,高度
吸收NIR荧光团。尽管在体外结果出色,但我们可以改善体内性能
有机染料,荧光蛋白和传统的半导体量子点(QD),通常昏暗,
有毒,不够红或上述所有。我们创建了一种材料,可以从内而外翻转一个量子点
制作由无毒元素(in,p,se,Zn,s)组成的量子壳(QS),可从500 - 900中调谐
NM。因为INP比CDSE更有效地吸收,所以这些材料比以前的材料更明亮
尺寸较小,同时在NIR中排放并降低毒性。我们提出了一个技术发展计划
将使我们能够完善这些粒子的结构和光学特性,以产生亮度匹配
荧光团的调色板可以在深组织中多路复用。我们将将这些粒子部署到广场成像中
和多光子显微镜(MPM)实验,首先客观地量化,然后演示光学
这些问题的优势。在评估了各种公式的体外和体内生物相容性之后
水溶性QSS,我们将使用靶向和未靶向的QS一起进行细胞表面的双重探针成像
生物标志物有选择地突出型元素肿瘤。除了广场成像外,我们还将客观地评估
QSS的MPM对比度。极高的颗粒吸收可确保高两个和三
光子动作横截面。我们将定量比较亮度和组织穿透深度
INP QSS针对其他红色和NIR荧光团。粒子的合成迭代将使用独特的粒子
几何形状生成具有不同发射颜色的QSS,但具有相同的亮度。我们将比较zwitterionic
在我们的基准脂质涂层上涂层,以尝试通过更长的循环时间来增强成像对比度
和更有效的目标。该项目的成功将产生无毒的NIR荧光团的彩虹
可以集体使用可以转化临床前分子成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allison Marie Dennis其他文献
Allison Marie Dennis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allison Marie Dennis', 18)}}的其他基金
In Vivo Mapping of Enzyme Activity using SWIR-emitting, Self-illuminating Quantum Dot Sensors
使用短波红外发射、自发光量子点传感器绘制酶活性体内图谱
- 批准号:
10762565 - 财政年份:2022
- 资助金额:
$ 46.2万 - 项目类别:
Biodegradable and Biocompatible Semiconductor Nanoparticles for Deep Tissue Imaging
用于深层组织成像的可生物降解和生物相容性半导体纳米颗粒
- 批准号:
9979273 - 财政年份:2020
- 资助金额:
$ 46.2万 - 项目类别:
Multiplexed Imaging in the Near Infrared with Indium Phosphide Quantum Shells
使用磷化铟量子壳进行近红外多重成像
- 批准号:
10682976 - 财政年份:2019
- 资助金额:
$ 46.2万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 46.2万 - 项目类别:
Impact of tissue resident memory T cells on the neuro-immune pathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10556857 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 46.2万 - 项目类别: