Mechanisms of interictal spike generation
发作间期尖峰产生的机制
基本信息
- 批准号:10222792
- 负责人:
- 金额:$ 38.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnimalsAntiepileptic AgentsAutomobile DrivingBrainCellsChloridesChronicCustomDataDevelopmentDevicesElectroencephalographyElementsEpilepsyEpileptogenesisGenerationsGoalsHippocampus (Brain)HumanImageIn VitroIncubatorsIndividualInjectionsInterneuronsKainic AcidLabelLightLinkMicroscopeModelingMolecularMusNeuronsOpticsOutputPathologicPathway interactionsPatientsPatternPhasePhenotypePopulationPreparationProteinsPublishingResolutionRoleSamplingSeizuresSliceSynapsesSystemTemporal Lobe EpilepsyTestingUnconscious Stateawakebasebehavioral phenotypingcalcium indicatorcell typedesigndigitalexperimental studygamma-Aminobutyric Acidin vivoin vivo imaginginnovationinsightkainatemicroendoscopyneural networknovelnovel therapeuticsoptogeneticsresponsetissue culture
项目摘要
Epilepsy is characterized by two pathological electrographic phenotypes: seizures and interictal spikes.
Seizures are relatively rare sustained elevations in brain activity or synchronization that often produce a
loss of consciousness in patients suffering from epilepsy. Interictal spikes are much more frequent (on
the order of 1 per minute), brief (~200ms), and have no behavioral phenotype (patient is typically not
aware of interictal spikes). It is well-established that epileptic networks commonly generate both types
of discharge and mounting evidence suggests that there is a direct link between interictal spikes and
seizure onset. This proposal aims to dissect the basic mechanisms of interictal spike generation, which
will offer new insight into the dynamics of epileptic neural networks (and, in turn, inform development
of novel therapeutics).
The proposed project will investigate the origins of interictal spikes using an experimentally accessible
preparation, the organotypic slice culture (which spontaneously develops interictal spikes and seizures
during its first weeks in culture), and a custom microscope (the “Incuscope”) specially designed to
record and manipulate activity with single-cell resolution, across the entire epileptic network. Imaging
the entire epileptic network guarantees that epileptiform activity observed is not driven by external
input. Furthermore, the Incuscope is built inside of a tissue culture incubator, enabling continuous,
month-long imaging as epileptic activity emerges and evolves. Findings will be validated in intact animals
using endomicroscopy-based in vivo imaging of interictal spikes.
The primary goals of this project are as follows: 1) Identify subpopulations of early-firing cells during
interictal spikes. 2) Optically stimulate early-firing cells to characterize the degree to which their
activation is sufficient to initiate spikes. 3) Optically inhibit early-firing cells to characterize the degree to
which their activation is necessary to initiate spikes. 4) Repeat experiments 1-3 in long-term (multi-
week) recordings to characterize the stability of early-firing cells and correlate observed changes with
seizure onset and seizure burden. 5) Repeat experiment 1 in awake mice, using endomicroscopy and the
intrahippocampal kainate model of epilepsy, to test whether the same population of cells is involved in
generating interictal spikes in vivo.
癫痫的特征是两种病理电学表型:癫痫发作和充线峰。
癫痫发作是相对较少的脑活动或同步的持续升高,通常会产生
患有癫痫患者的意识丧失。充
每分钟1),简短(〜200ms),没有行为表型(患者通常不是
意识到发作尖峰)。众所周知的是,癫痫网络通常会生成两种类型
排放和安装的证据表明,间孔隙之间存在直接联系
癫痫发作。该提案旨在剖析间峰产生的基本机制,这是
将为癫痫神经元网络的动态提供新的见解
新疗法)。
拟议的项目将使用实验可访问的发作尖峰的起源
准备,有机切片培养物(在赞助上发展发作尖峰和癫痫发作
在文化的最初几周内),以及专门设计的定制显微镜(“ incuscope”)
在整个癫痫网络中,通过单细胞分辨率记录和操纵活动。成像
整个癫痫网络保证观察到的癫痫样活动不会由外部驱动
输入。此外,障碍物是在组织培养孵化器内部建造的,使得连续,
随着癫痫活性的出现和演变,长达一个月的成像。发现将在完整动物中得到验证
使用基于iNMROSCOPY的间体尖峰的体内成像。
该项目的主要目标如下:1)确定在
间歇性尖峰。 2)光学刺激早期射击细胞以表征其其程度
激活足以引发峰值。 3)光学抑制早期发射细胞以表征该度
它们的激活是启动峰值所必需的。 4)长期重复实验1-3
每周)记录以表征早期射击细胞的稳定性,并将观察到的变化与
癫痫发作和癫痫发作负担。 5)在清醒小鼠中重复实验1,使用巨型显体和
癫痫的乳腺内海事内海藻酸盐模型,以测试是否参与相同的细胞群
在体内产生间歇性尖峰。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyle Patrick Lillis其他文献
Kyle Patrick Lillis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyle Patrick Lillis', 18)}}的其他基金
Epileptogenic Changes in Local Network Structure Following Injury (Project 2)
损伤后局部网络结构的致癫痫变化(项目 2)
- 批准号:
10713245 - 财政年份:2023
- 资助金额:
$ 38.71万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
以秀丽隐杆线虫为例探究动物在不同时间尺度行为的神经基础
- 批准号:32300829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
脊椎动物胚胎发育单细胞磷酸化蛋白质组高通量高灵敏度分析新技术新方法
- 批准号:22374084
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新疆旱獭等啮齿动物携带病毒的病原学与病原生态学研究
- 批准号:32300424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Testing the effects of a selective calpain-2 inhibitor on spontaneous recurrent seizures in mouse models of epilepsy
测试选择性 calpain-2 抑制剂对小鼠癫痫模型自发性复发性癫痫发作的影响
- 批准号:
10696598 - 财政年份:2023
- 资助金额:
$ 38.71万 - 项目类别:
Neural circuit mechanisms controlling seizures
控制癫痫发作的神经回路机制
- 批准号:
10190827 - 财政年份:2021
- 资助金额:
$ 38.71万 - 项目类别:
Exploring the role of oxytocin in the regulation of neuronal excitability
探索催产素在神经元兴奋性调节中的作用
- 批准号:
10593062 - 财政年份:2021
- 资助金额:
$ 38.71万 - 项目类别:
Exploring the role of oxytocin in the regulation of neuronal excitability
探索催产素在神经元兴奋性调节中的作用
- 批准号:
10397642 - 财政年份:2021
- 资助金额:
$ 38.71万 - 项目类别:
Neural circuit mechanisms controlling seizures
控制癫痫发作的神经回路机制
- 批准号:
10383710 - 财政年份:2021
- 资助金额:
$ 38.71万 - 项目类别: