Biosynthetic Pathways in Cardiac Remodeling
心脏重塑中的生物合成途径
基本信息
- 批准号:10220122
- 负责人:
- 金额:$ 74.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnabolismAtlasesCarbonCardiacCardiac MyocytesCardiac healthCatabolismCuesDataDeteriorationDilated CardiomyopathyEnzymesEquilibriumExerciseFaceFat BodyFatty acid glycerol estersFunctional disorderGene ExpressionGenesGlucoseGlycolysisGoalsGrowthHeartHeart DiseasesHeart HypertrophyHeart failureHexosaminesHypertrophyInterventionKetone BodiesKetonesKnowledgeMeasuresMetabolicMetabolic PathwayMetabolismMitochondriaMyocardialMyocardial InfarctionNucleic AcidsOrganPathologicPathway interactionsPentosephosphate PathwayPharmacologyPhasePhosphoenolpyruvate CarboxylasePhysiologicalPregnancyProteinsReactionSerineSignal TransductionStimulusStressStructureTestingVentricular Remodelingflexibilitygenetic approachglucose metabolismheart functionheart metabolismimprovedin vivoinnovationinsightmembrane synthesisnoveloxidationpolyolpreferencepressurepreventprogramsresponsestable isotope
项目摘要
The ability of the heart to use multiple substrates provides the flexibility needed to balance catabolic demands
with anabolic requirements; however, the failing heart shifts its energetic reliance toward glucose, and has
diminished fuel flexibility. This switch in fuel use is associated with pathological remodeling, but it remains
unclear how increased reliance on glucose catabolism affects cardiac health. We propose the general
hypothesis that the inability of the failing heart to spare glucose-derived carbon for biosynthetic reactions
causes pathological remodeling. We find that several collateral biosynthetic pathway metabolites are higher in
the compensatory phase of hypertrophy, and that reductions in their abundance coincide with the early stages
of heart failure. Nevertheless, how cardiac metabolic pathways are inter-regulated remains unclear, and how
changes in metabolism elicit myocardial responses to stress remains unanswered. To span such gaps in
knowledge, we will examine how collateral biosynthetic pathways change with cardiac remodeling in vivo by
using deep network stable isotope tracing after pressure overload. We will also examine how physiologic
stimuli for cardiac growth regulate cardiac biosynthetic pathway activity. We will correlate the changes in
biosynthetic pathways with catabolic pathway activity. In Aim 2, we will determine how changes in the cardiac
catabolism modulate collateral biosynthetic pathway activity in the heart. For this, we will force glucose, fat, or
ketone oxidation using pharmacological and genetic approaches and measure glucose carbon fate in anabolic
pathways using deep network stable isotope tracing. Under controlled metabolic conditions, we will construct
an atlas demonstrating how glycolysis, mitochondrial activity, and substrate availability affect glucose carbon
fate and anabolic pathway activity in cardiomyocytes. In Aim 3, we will augment biosynthetic pathway activity
by genetically or allosterically regulating key metabolic steps in the heart or by introducing enzymes to activate
metabolic pathways that are not typically operational in the mammalian heart. We will determine how these
interventions regulate cardiac metabolism and affect myocardial structure and function during pressure
overload-induced heart failure. We will delineate how these interventions affect the metabolism-guided
decisions in cell signaling and gene expression that modulate cardiac hypertrophy and heart failure. Thus, this
project will provide fresh perspectives about how metabolism regulates cardiac health and could identify
innovative metabolic approaches to control cardiac remodeling. In particular, these studies will integrate our
current understanding of cardiac catabolism with new knowledge of how cardiac anabolism is regulated in the
heart. Such insights are conceptually novel and will contribute to understanding how metabolism regulates
cardiac hypertrophy. Thus, these studies will identify: the metabolic pathway flux configurations that occur
during different forms of ventricular remodeling; how fuel selection in the cardiomyocyte regulates anabolic
metabolism; and new metabolic approaches to prevent deleterious remodeling.
心脏使用多种底物的能力提供了平衡分解代谢需求所需的灵活性
具有合成代谢要求;然而,衰竭的心脏将其能量依赖转向葡萄糖,并且已经
燃料灵活性降低。燃料使用的这种转变与病理性重塑有关,但它仍然存在
目前尚不清楚对葡萄糖分解代谢的依赖增加如何影响心脏健康。我们建议一般
假设衰竭的心脏无法将葡萄糖衍生的碳用于生物合成反应
引起病理性重塑。我们发现几种侧支生物合成途径代谢物在
肥大的代偿阶段,其丰度的减少与早期阶段一致
心力衰竭。然而,心脏代谢途径如何相互调节仍不清楚,以及如何
新陈代谢的变化引起心肌对应激的反应仍然没有答案。为了跨越这样的差距
知识,我们将通过体内心脏重塑来研究侧支生物合成途径如何变化
压力过载后使用深层网络稳定同位素追踪。我们还将检查生理学如何
心脏生长的刺激调节心脏生物合成途径的活性。我们将把这些变化关联起来
具有分解代谢途径活性的生物合成途径。在目标 2 中,我们将确定心脏的变化如何
分解代谢调节心脏中的侧支生物合成途径活性。为此,我们将强制葡萄糖、脂肪或
使用药理学和遗传学方法进行酮氧化并测量合成代谢中的葡萄糖碳命运
使用深层网络稳定同位素追踪的途径。在受控的代谢条件下,我们将构建
展示糖酵解、线粒体活性和底物可用性如何影响葡萄糖碳的图谱
心肌细胞的命运和合成代谢途径活性。在目标 3 中,我们将增强生物合成途径的活性
通过遗传或变构调节心脏的关键代谢步骤或通过引入酶来激活
哺乳动物心脏中通常不运作的代谢途径。我们将确定如何这些
干预措施在压力过程中调节心脏代谢并影响心肌结构和功能
超负荷引起的心力衰竭。我们将描述这些干预措施如何影响新陈代谢引导的
调节心脏肥大和心力衰竭的细胞信号传导和基因表达的决定。因此,这个
该项目将为新陈代谢如何调节心脏健康提供新的视角,并可以识别
控制心脏重塑的创新代谢方法。特别是,这些研究将整合我们的
当前对心脏分解代谢的理解以及心脏合成代谢如何在心脏中进行调节的新知识
心。这些见解在概念上是新颖的,将有助于理解新陈代谢如何调节
心脏肥大。因此,这些研究将确定: 发生的代谢途径通量配置
在不同形式的心室重塑过程中;心肌细胞的燃料选择如何调节合成代谢
代谢;以及防止有害重塑的新代谢方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradford Guy Hill其他文献
Bradford Guy Hill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradford Guy Hill', 18)}}的其他基金
BIOENERGETIC REGULATION OF CARDIAC PROGENITOR CELLS
心脏祖细胞的生物能调节
- 批准号:
8360419 - 财政年份:2011
- 资助金额:
$ 74.98万 - 项目类别:
Project 3 - Regulation of Metabolism by Nitric Oxide
项目 3 - 一氧化氮代谢调节
- 批准号:
8711512 - 财政年份:
- 资助金额:
$ 74.98万 - 项目类别:
Project 3 - Regulation of Metabolism by Nitric Oxide
项目 3 - 一氧化氮代谢调节
- 批准号:
8601974 - 财政年份:
- 资助金额:
$ 74.98万 - 项目类别:
相似国自然基金
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
可代谢调控弱碱性钠盐纳米材料的控制合成及其在增强癌症免疫治疗中的应用
- 批准号:52372273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥UBC34通过介导ABA的合成与代谢调控盐胁迫应答的机制研究
- 批准号:32300248
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
苯丙氨酰tRNA合成酶α(FARSA)调控脂肪细胞脂质代谢的机制研究
- 批准号:82300954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Cadmium and Arsenic Effects on Pyrimidine Biosynthesis in Early Airway Development
镉和砷对早期气道发育中嘧啶生物合成的影响
- 批准号:
10568094 - 财政年份:2023
- 资助金额:
$ 74.98万 - 项目类别:
Defining mechanisms to promote antitumor immunity by modulating one-carbon metabolism
定义通过调节一碳代谢促进抗肿瘤免疫的机制
- 批准号:
10565099 - 财政年份:2023
- 资助金额:
$ 74.98万 - 项目类别:
Metabolic regulators of Treg/Th17 balance in CNS autoimmunity
CNS 自身免疫中 Treg/Th17 平衡的代谢调节因子
- 批准号:
10708996 - 财政年份:2022
- 资助金额:
$ 74.98万 - 项目类别:
Metabolic regulators of Treg/Th17 balance in CNS autoimmunity
CNS 自身免疫中 Treg/Th17 平衡的代谢调节因子
- 批准号:
10585009 - 财政年份:2022
- 资助金额:
$ 74.98万 - 项目类别: