Integrative clustering of cells and samples using multi-modal single-cell data
使用多模态单细胞数据对细胞和样本进行综合聚类
基本信息
- 批准号:10215623
- 负责人:
- 金额:$ 35.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAddressAfricanAlgorithmsAmericanApacheAtlasesBayesian ModelingBioinformaticsBiologicalBiological ProcessBiologyBiometryBiopsyBostonBrainCatalogsCellsCellular AssayCharacteristicsChromatinClinical DataCloud ComputingComplexComputational BiologyDataData SetDevelopmentDevelopmental ProcessDevicesDiseaseEnvironmentEuropeanFundingGene ClusterGene ExpressionGenomicsGoalsHigh Performance ComputingHumanImmunologyIndividualLesionLettersLungLung noduleMalignant NeoplasmsMalignant neoplasm of prostateMassachusettsMeasurementMeasuresMessenger RNAMethodsMicrofluidicsModelingMolecularMolecular and Cellular BiologyNatureNoiseNormal CellNoseOpiate AddictionPatientsProceduresProcessProteinsProtocols documentationResearch PersonnelRunningSamplingSmokerSmokingSpeedSubgroupTechniquesTechnologyTissuesVisualizationbasecancer heterogeneitycell typecloud basedcloud platformcluster computingcombatcomplex biological systemscomputer sciencedigitaldiscrete dataepigenetic markerexperimental studygenomic datahigh riskhuman tissueinsightlanguage processinglarge scale datalung developmentmultimodal datamultimodalitymultiple data typesnew technologynovelpremalignantprotein biomarkersprotein expressionsingle cell analysissingle cell technologysingle-cell RNA sequencinguser-friendlyweb interface
项目摘要
Single-cell genomic technologies such as single-cell RNA-seq have emerged as powerful techniques to quantify
molecular states of individual cells and can be used to elucidate the cellular building blocks of complex tissues
and diseases. Given recent rapid advances in single-cell technologies, novel statistical and computational
approaches are needed to efficiently analyze large-scale single-cell datasets with multiple data types such as
gene and protein expression. Discrete Bayesian hierarchical models have been widely used for unsupervised
modeling of discrete data types in fields such as Nature Language Processing (NLP). We have developed a
Bayesian hierarchical model called Cellular Latent Dirichlet Allocation (Celda) to perform bi-clustering of genes
into modules and cells into subpopulations. We will develop novel models that can perform clustering of cells
into subpopulations using multi-modal genomic data or clustering of patients into subgroups using both single-
cell data and patient-level characteristics. These novel methods will be made available in a scalable and
interpretable cloud-based framework accessible to both computational and non-computational users. The aims
of this study are to (1) develop novel models to perform integrative multi-modal and multi-level clustering with
single-cell data, (2) develop an R package and cloud-based platform with a web interface for rapid inference and
visualization of large-scale datasets, and (3) apply Celda models to single-cell datasets from a variety of
biological settings including cancer, lung development, and immunology. Overall, these aims will be
accomplished by an interdisciplinary team with strong expertise in computational biology and bioinformatics,
biostatistics, computer science, and molecular and cellular biology.
单细胞基因组技术(例如单细胞RNA-seq)已成为量化的强大技术
单个细胞的分子态,可用于阐明复杂组织的细胞构建块
和疾病。鉴于单细胞技术的最新快速进步,新型统计和计算
需要采用方法来有效地分析具有多种数据类型的大规模单细胞数据集
基因和蛋白质表达。离散的贝叶斯分层模型已被广泛用于无监督
在诸如自然语言处理(NLP)等领域中离散数据类型的建模。我们已经开发了
贝叶斯分层模型称为细胞潜在迪里奇莱特分配(CELDA),以执行基因的双聚类
进入模块和细胞分成亚群。我们将开发可以执行细胞聚类的新型模型
使用多模式基因组数据或患者聚集到亚组中的亚组中的亚组
细胞数据和患者级特征。这些新颖的方法将以可扩展性和
可解释的基于云的框架可供计算和非计算用户访问。目的
这项研究的是(1)开发新型模型,以执行综合多模式和多级聚类与
单细胞数据,(2)开发一个带有Web接口的R包和云平台,用于快速推断和
大规模数据集的可视化,(3)将CELDA模型应用于各种单细胞数据集
生物环境,包括癌症,肺发育和免疫学。总的来说,这些目标将是
由一个跨学科团队完成的,在计算生物学和生物信息学方面具有强大的专业知识,
生物统计学,计算机科学以及分子和细胞生物学。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning enables design automation of microfluidic flow-focusing droplet generation.
- DOI:10.1038/s41467-020-20284-z
- 发表时间:2021-01-04
- 期刊:
- 影响因子:16.6
- 作者:Lashkaripour A;Rodriguez C;Mehdipour N;Mardian R;McIntyre D;Ortiz L;Campbell J;Densmore D
- 通讯作者:Densmore D
Characterization and decontamination of background noise in droplet-based single-cell protein expression data with DecontPro.
使用 DecontPro 对基于液滴的单细胞蛋白质表达数据中的背景噪声进行表征和净化。
- DOI:10.1101/2023.01.27.525964
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yin,Yuan;Yajima,Masanao;Campbell,JoshuaD
- 通讯作者:Campbell,JoshuaD
Celda: a Bayesian model to perform co-clustering of genes into modules and cells into subpopulations using single-cell RNA-seq data.
- DOI:10.1093/nargab/lqac066
- 发表时间:2022-09
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua D Campbell其他文献
Joshua D Campbell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua D Campbell', 18)}}的其他基金
Investigating the mechanisms of driver genes associated with ancestry and aggressiveness in prostate cancer
研究与前列腺癌的血统和侵袭性相关的驱动基因的机制
- 批准号:
10403592 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Investigating the mechanisms of driver genes associated with ancestry and aggressiveness in prostate cancer
研究与前列腺癌的血统和侵袭性相关的驱动基因的机制
- 批准号:
10615833 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10684720 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10490301 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Investigating the mechanisms of driver genes associated with ancestry and aggressiveness in prostate cancer
研究与前列腺癌的血统和侵袭性相关的驱动基因的机制
- 批准号:
10198345 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10305242 - 财政年份:2021
- 资助金额:
$ 35.89万 - 项目类别:
Integrative clustering of cells and samples using multi-modal single-cell data
使用多模态单细胞数据对细胞和样本进行综合聚类
- 批准号:
9981822 - 财政年份:2019
- 资助金额:
$ 35.89万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Core: Biorepository and Clinical Trial Office Shared Resource
核心:生物样本库和临床试验办公室共享资源
- 批准号:
10911638 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Core: Biorepository and Clinical Trial Office Shared Resource
核心:生物样本库和临床试验办公室共享资源
- 批准号:
10911643 - 财政年份:2023
- 资助金额:
$ 35.89万 - 项目类别:
Mixed methods research to increase engagement and smoking abstinence among African Americans enrolled in Quitline text messaging services
混合方法研究,以提高使用戒烟热线短信服务的非裔美国人的参与度和戒烟率
- 批准号:
10543123 - 财政年份:2022
- 资助金额:
$ 35.89万 - 项目类别:
Mixed methods research to increase engagement and smoking abstinence among African Americans enrolled in Quitline text messaging services
混合方法研究,以提高使用戒烟热线短信服务的非裔美国人的参与度和戒烟率
- 批准号:
10371417 - 财政年份:2022
- 资助金额:
$ 35.89万 - 项目类别: