Harnessing Rare Variants for Tumor Classification
利用罕见变异进行肿瘤分类
基本信息
- 批准号:10206386
- 负责人:
- 金额:$ 40.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAttentionBeliefBloodBlood ScreeningBlood specimenCancer PatientChromatinClassificationClinicalComputational LinguisticsComputing MethodologiesDNADNA Replication TimingDataData SetDatabasesDependenceDiagnosisDiagnosticEcologyEncyclopedia of DNA ElementsEpigenetic ProcessExhibitsGenesGenetic TranscriptionGenomeGenomicsGenotypeGoalsGuanine + Cytosine CompositionIcebergInternationalInvestigationKnowledgeLaboratoriesLinguisticsLocationMalignant NeoplasmsMapsMedicalMethodsModelingModernizationMutationOncogenesOrganPatientsPatternProbabilityResearchResearch PersonnelSignal TransductionSiteSomatic MutationSourceStatistical MethodsStatistical ModelsTechniquesTestingThe Cancer Genome AtlasTissuesTumor TissueUntranslated RNAValidationVariantWorkbasebioinformatics resourcecancer carecancer genomecancer sitecancer typecirculating DNAclassification algorithmclinical applicationclinically actionableclinically relevantexomegenomic locushistone modificationindividual patientinsightlanguage processingnovelpredictive toolsprototyperare variantscreeningtooltumortumor DNAwhole genome
项目摘要
Abstract
This project concerns how to extract clinically actionable information for diagnostic purposes from mutational
patterns observed from tumor sequencing panels that are increasingly being used in routine medical care of
cancer patients. In recent years there has been intense scrutiny of the mutational landscape, using publicly
available databases such as The Cancer Genome Atlas and other important sources of information on somatic
mutations. However, the bulk of the attention has focused on major cancer genes, and especially the hotspot
mutations in these genes at which mutations occur frequently. However, the vast majority of somatic mutations
occur at “rare” genetic loci. Of the 1,788,153 distinct mutations that were observed in the 10,295 TCGA tumors
over 92% were singletons, i.e. mutations observed in only one tumor. Moreover, when new tumors are
sequenced, on average 60% of mutations observed are mutations that were not observed in TCGA. To date
investigators have mostly ignored this “hidden iceberg” of potential information. Our proposal is motivated by
the belief that at least a portion of these rare mutations contain important information that could be harnessed
for clinical purposes. In preliminary work we have adapted statistical methods that were developed for use in
analogous investigations in other scientific fields, such as species identification in ecology and language
processing, and have been able to demonstrate that the probabilities of observing rare variants in known
cancer genes differs markedly by gene, that these probabilities can be estimated accurately, and that for some
genes the probabilities exhibit strong lineage dependency. Motivated by these findings, we propose to broaden
the scope of these methods to investigate lineage dependency throughout the genome and to use the
information to develop accurate tools for classifying tumors by tissue site of origin. In Aim 1, we will integrate
data from various bioinformatic resources to characterize genes as well as mutations in non-coding parts of the
genome on the basis of their local GC content, DNA replication timing, transcriptional activity, chromatin
accessibility, and histone modification marks in the corresponding tissues-of-origin with a view to mapping
lineage-dependent variation in rare and previously unobserved variants. In Aim 2, we will use this information
to construct a classification tool based on a penalized hierarchical mixed-effects statistical model that permits
direct use of these “meta-features” for imputing the discriminatory effects of rare and previously unseen
variants. We will examine the predictive accuracy of the model using empirical validation datasets and study its
computational feasibility in the context of different data settings, e.g. panel sequencing versus whole-exome
and whole-genome. The ultimate goal is to create a tool for the classification of the anatomic site of origin of
cancers of unknown primary and of cancers detected through screening of circulating tumor DNA in the blood.
抽象的
该项目涉及如何从突变中提取临床可行的信息以进行诊断目的
从肿瘤测序面板中观察到的模式,这些图案越来越多地用于常规医疗护理
癌症患者。近年来,人们对突变格局进行了严格的审查,并使用公开审查
可用的数据库,例如癌症基因组图集和其他有关体细胞的重要信息来源
突变。但是,大部分注意都集中在主要的癌症基因上,尤其是热点
突变经常发生的这些基因中的突变。但是,绝大多数躯体突变
发生在“稀有”遗传基因座。在10,295个TCGA肿瘤中观察到的1,788,153个不同的突变中
超过92%的单例,即仅在一个肿瘤中观察到的突变。而且,当新肿瘤是
测序,平均观察到的突变中有60%是在TCGA中未观察到的突变。迄今为止
调查人员主要忽略了潜在信息的“隐藏冰山”。我们的建议是由
相信这些罕见突变中至少一部分包含可以利用的重要信息
出于临床目的。在初步工作中,我们采用了用于使用的统计方法
其他科学领域的类似研究,例如生态和语言的规范
处理,并能够证明在已知中观察稀有变体的可能性
癌症基因的基因明显不同,可以准确地估算这些可能性,并且对于某些可能性
基因的可能性表现出强烈的谱系依赖性。在这些发现的激励下,我们建议扩大
这些方法的范围是研究整个基因组中的谱系依赖性并使用
信息以开发准确的工具,以通过组织部位对肿瘤进行分类。在AIM 1中,我们将整合
来自各种生物信息学资源的数据来表征基因以及在非编码部分的突变
基因组基于其本地GC含量,DNA复制时间,转录活性,染色质
可访问性和相应组织中的Hisstone修饰标记,以映射
稀有和以前未观察到的变体的谱系依赖性变化。在AIM 2中,我们将使用此信息
构建基于惩罚的层次混合效应统计模型的分类工具,该模型允许
直接使用这些“元功能”来推出罕见和以前看不见的歧视性效果
变体。我们将使用经验验证数据集检查模型的预测准确性,并研究其
在不同数据设置的上下文中的计算可行性,例如面板测序与整个外观
和整个基因组。最终目标是创建一种工具,以分类的分类。
通过筛选血液中循环肿瘤DNA检测到的未知原发性和癌症的癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin B Begg其他文献
Adaptation of a Mutual Exclusivity Framework to Identify Driver Mutations within Biological Pathways
采用相互排斥框架来识别生物途径中的驱动突变
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xinjun Wang;Caroline E Kostrzewa;Allison Reiner;R. Shen;Colin B Begg - 通讯作者:
Colin B Begg
InterMEL: An international biorepository and clinical database to uncover predictors of survival in early-stage melanoma
InterMEL:一个国际生物储存库和临床数据库,用于揭示早期黑色素瘤的生存预测因素
- DOI:
10.1101/2022.05.21.22275329 - 发表时间:
2022 - 期刊:
- 影响因子:7.9
- 作者:
Irene Orlow;Keimya Sadeghi;S. Edmiston;Jessica M. Kenney;Cecilia Lezcano;J. Wilmott;A. E. Cust;R. Scolyer;Graham J. Mann;Tim K. Lee;H. Burke;V. Jakrot;Pin Shang;P. Ferguson;T. Boyce;Jennifer S. Ko;Peter Ngo;P. Funchain;J. R. Rees;Kelli O’Connell;Honglin Hao;E. Parrish;K. Conway;P. Googe;D. Ollila;S. Moschos;Eva Hernando;D. Hanniford;D. Argibay;Christopher I. Amos;Jeffrey E. Lee;Iman Osman;Li;14;Luo;P.;Arshi Aurora;B. G. Rothberg;M. Bosenberg;R. Gerstenblith;C. Thompson;Paul N. Bogner;I. Gorlov;Sheri L. Holmen;E. Brunsgaard;Yvonne M Saenger;R. Shen;V. Seshan;M. Ernstoff;K. J. Busam;Colin B Begg;N. Thomas;Marianne;18;Berwick - 通讯作者:
Berwick
Colin B Begg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colin B Begg', 18)}}的其他基金
Leveraging the Hidden Genome to Recover the Missing Heritability of Cancer
利用隐藏的基因组来恢复癌症缺失的遗传性
- 批准号:
10586348 - 财政年份:2023
- 资助金额:
$ 40.49万 - 项目类别:
Harnessing Rare Variants for Tumor Classification
利用罕见变异进行肿瘤分类
- 批准号:
10599861 - 财政年份:2021
- 资助金额:
$ 40.49万 - 项目类别:
Harnessing Rare Variants for Tumor Classification
利用罕见变异进行肿瘤分类
- 批准号:
10374906 - 财政年份:2021
- 资助金额:
$ 40.49万 - 项目类别:
Quantitative Sciences Summer Undergraduate Research Experience (QSURE) Fellowship
定量科学暑期本科生研究经验(QSURE)奖学金
- 批准号:
10517498 - 财政年份:2017
- 资助金额:
$ 40.49万 - 项目类别:
Quantitative Sciences Summer Undergraduate Research Experience (QSURE) Fellowship
定量科学暑期本科生研究经验(QSURE)奖学金
- 批准号:
10057361 - 财政年份:2017
- 资助金额:
$ 40.49万 - 项目类别:
Quantitative Sciences Summer Undergraduate Research Experience (QSURE) Fellowship
定量科学暑期本科生研究经验(QSURE)奖学金
- 批准号:
10311503 - 财政年份:2017
- 资助金额:
$ 40.49万 - 项目类别:
Statistical Strategies for Establishing Etiologic Heterogeneity of Tumors
建立肿瘤病因异质性的统计策略
- 批准号:
8368187 - 财政年份:2012
- 资助金额:
$ 40.49万 - 项目类别:
Statistical Strategies for Establishing Etiologic Heterogeneity of Tumors
建立肿瘤病因异质性的统计策略
- 批准号:
8509633 - 财政年份:2012
- 资助金额:
$ 40.49万 - 项目类别:
Statistical Strategies for Establishing Etiologic Heterogeneity of Tumors
建立肿瘤病因异质性的统计策略
- 批准号:
8677807 - 财政年份:2012
- 资助金额:
$ 40.49万 - 项目类别:
相似国自然基金
人机共驾模式下驾驶人监管注意力弱化-恢复规律与调控机理
- 批准号:52302425
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
逆全球化下跨国企业动态能力形成的微观机理研究:高管注意力配置视角
- 批准号:72302220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
注意力感知驱动的车载多模态传感器在线协同校正
- 批准号:42301468
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于两阶段注意力深度学习方法的系统性金融风险测度与预警研究
- 批准号:72301101
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Architectonic analysis of complex cortical circuits in healthy and diseased brain
健康和患病大脑中复杂皮质回路的结构分析
- 批准号:
10749697 - 财政年份:2023
- 资助金额:
$ 40.49万 - 项目类别:
Mesoscale dynamics underlying expectation bias in the orbitofrontal cortex
眶额皮层期望偏差的中尺度动力学
- 批准号:
10571994 - 财政年份:2022
- 资助金额:
$ 40.49万 - 项目类别:
Harnessing Rare Variants for Tumor Classification
利用罕见变异进行肿瘤分类
- 批准号:
10599861 - 财政年份:2021
- 资助金额:
$ 40.49万 - 项目类别:
Harnessing Rare Variants for Tumor Classification
利用罕见变异进行肿瘤分类
- 批准号:
10374906 - 财政年份:2021
- 资助金额:
$ 40.49万 - 项目类别:
Examining Prenatal Inflammation and Neurodevelopment in a Longitudinal Fetal-to-Age 9 Imaging Study
在胎儿至 9 岁纵向影像学研究中检查产前炎症和神经发育
- 批准号:
10369041 - 财政年份:2020
- 资助金额:
$ 40.49万 - 项目类别: