Confocal video-mosaicking microscopy to guide surgery of superficially spreading skin cancers
共聚焦视频马赛克显微镜指导浅表扩散皮肤癌的手术
基本信息
- 批准号:10203886
- 负责人:
- 金额:$ 64.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAreaBenignBiopsyCaliberClinicClinicalCodeCollaborationsComputer Vision SystemsConfocal MicroscopyDermatologistDiagnosisDiagnosticDiffuseExcisionFunding OpportunitiesGrantHutchinson&aposs Melanotic FreckleHybridsImageLasersLearningLesionMachine LearningMalignant NeoplasmsMapsMemorial Sloan-Kettering Cancer CenterMicroscopeMicroscopyModelingMorbidity - disease rateMorphologic artifactsMorphologyMosaicismMotionNoiseNormal tissue morphologyOperative Surgical ProceduresOpticsPathologistPathologyPatientsPharmacotherapyProceduresProcessPublic HealthRadiation therapyResearchResearch PersonnelSafetySamplingSkinSkin CancerSkin CarcinomaSkin TissueSpecificitySpeedStandardizationSurfaceSurgeonSurgical PathologyTestingTimeTissue ModelTissuesUnited States Centers for Medicare and Medicaid ServicesUniversitiesValidationVideo MicroscopyVisitVisualblindcellular imagingclinical practicedeep learningdesignexpectationhuman imagingimage guidedimage guided therapyimaging approachin vivoindustry partnerinnovationinterestlearning networkmicroscopic imagingnoninvasive diagnosisnovelolder patientpreservationprospective testreflectance confocal microscopyresponsevector
项目摘要
Superficially spreading types of skin cancers such as lentigo maligna melanomas (LMMs) and non-melanoma
skin cancers (NMSCs) occur mostly on older patients, with diffuse sub-clinical sub-surface spread over large
areas and with poorly defined margins that are difficult to detect. To treat these cancers, dermatologists rou-
tinely perform a large number of mapping biopsies to determine the spread and margins, followed by surgical
excision with wide "safety" margins. Not surprisingly, such a "blind" approach results in under-sampling of the
margins, over-sampling of normal skin, too many false positives and false negatives, and too much loss of
normal skin tissue. What may help address this problem is reflectance confocal microscopy (RCM) imaging to
noninvasively delineate margins, directly on patients. RCM imaging detects skin cancers in vivo with sensitivity
of 85-95% and specificity 80-70%. In 2016, the Centers for Medicare and Medicaid Services granted reim-
bursement codes for RCM imaging of skin. RCM imaging is now being increasingly used to noninvasively
guide diagnosis, sparing patients from unnecessary biopsies of benign lesions. While the two-decade effort
leading to the granting of these codes was focused on imaging-guided diagnosis, emerging applications are in
imaging to guide therapy. We propose to create an approach called RCM video-mosaicking, to noninvasively
map skin cancer margins over large areas on patients, with increased sampling, accuracy and sparing of nor-
mal tissue. The innovation will be in designing a highly robust (against tissue warping and motion artifacts)
and high speed (real-time, seconds) approach for RCM video-mosaicking: we will develop an optical flow ap-
proach with a novel hybrid 3-stage deep learning network comprising of 8 parameters that will model global
and local rigid and non-rigid tissue motion dynamics, learn and adapt to variable tissue and speckle noise con-
ditions in patients, and predict and automatically detect motion blur artifacts. As required by PAR-18-009, our
academic-industrial partnership will deliver RCM video-mosaicking to clinicians for real-time implementation at
the bedside (translational novelty). Our proposed application is for guiding surgical excision, but the approach
will have wider impact, for guiding new and emerging less invasive non-surgical treatments for superficial skin
cancers. In a preliminary study, we demonstrated RCM video-mosaicking with real-time speed (125 millisec-
onds per frame, 8 frames per second), and registration errors of 1.02 ± 1.3 pixels relative to field-of-view of
1000 x 1000 pixels. Our specific aims are (1) to develop a real-time and robust RCM video-mosaicking ap-
proach and incorporate into a handheld confocal microscope for use at the bedside, (2) to test the approach for
image quality and clinical acceptability, and (3) to prospectively test on 100 patients, with pre-surgical video-
mosaicking of LMM margins and superficial NMSC margins, followed by validation against post-surgical pa-
thology. We are a highly synergistic team from Memorial Sloan Kettering Cancer Center, Northeastern Uni-
versity, and Caliber Imaging and Diagnostics (formerly, Lucid Inc.), with a 13-year record of collaboration.
浅表扩散类型的皮肤癌,例如恶性雀斑样痣黑色素瘤 (LMM) 和非黑色素瘤
皮肤癌(NMSC)主要发生在老年患者身上,弥漫性亚临床亚表面下扩散到大范围内。
为了治疗这些癌症,皮肤科医生需要进行常规治疗。
精细地进行大量活检以确定扩散和边缘,然后进行手术
毫不奇怪,这种“盲目”方法会导致采样不足。
边缘、正常皮肤的过度采样、太多的假阳性和假阴性以及太多的损失
反射共焦显微镜(RCM)成像可能有助于解决这个问题。
RCM 成像直接在患者身上无创地描绘边缘,可灵敏地检测体内皮肤癌。
85-95% 和特异性 80-70% 2016 年,医疗保险和医疗补助服务中心授予了重新调整权。
皮肤 RCM 成像的支付代码 RCM 成像现在越来越多地用于无创性。
指导诊断,使患者免于对良性病变进行不必要的活检,同时花费了两年的努力。
导致授予这些代码的重点是影像引导诊断,新兴应用正在
我们建议创建一种称为 RCM 视频马赛克的方法,以非侵入性方式进行治疗。
绘制患者大面积皮肤癌边缘图,提高采样率、准确性并减少正常情况
创新将在于设计高度稳健的(防止组织扭曲和运动伪影)
用于 RCM 视频马赛克的高速(实时,秒)方法:我们将开发一种光流应用程序
采用新颖的混合三阶段深度学习网络,该网络包含 8 个参数,可对全局进行建模
以及局部刚性和非刚性组织运动动力学,学习并适应可变组织和散斑噪声控制
根据我们的 PAR-18-009 的要求,预测并自动检测运动模糊伪影。
学术与工业合作伙伴关系将向工头提供 RCM 视频马赛克,以便实时实施
床边(转化新颖性)。我们提出的应用程序是用于指导手术切除,但方法。
将产生更广泛的影响,指导新兴的浅表皮肤微创非手术治疗
在一项初步研究中,我们展示了实时速度(125 毫秒)的 RCM 视频马赛克。
每帧 8 帧),相对于视场的配准误差为 1.02 ± 1.3 像素
1000 x 1000 像素。我们的具体目标是 (1) 开发实时且强大的 RCM 视频马赛克应用程序。
接近并合并到手持式共焦显微镜中以在床边使用,(2) 测试该方法
图像质量和临床可接受性,以及 (3) 通过术前视频对 100 名患者进行前瞻性测试
LMM 边缘和浅表 NMSC 边缘的镶嵌,然后针对术后 pa 进行验证
我们是来自东北大学纪念斯隆凯特琳癌症中心的一支高度协同的团队。
versity 和 Calibre Imaging and Diagnostics(前身为 Lucid Inc.),拥有 13 年的合作记录。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Octavia Irma Camps其他文献
Octavia Irma Camps的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Octavia Irma Camps', 18)}}的其他基金
Simultaneous coaxial widefield imaging and reflectance confocal microscopy for improved diagnosis of skin cancers in vivo
同时同轴宽场成像和反射共焦显微镜可改善皮肤癌的体内诊断
- 批准号:
10372929 - 财政年份:2020
- 资助金额:
$ 64.2万 - 项目类别:
Simultaneous coaxial widefield imaging and reflectance confocal microscopy for improved diagnosis of skin cancers in vivo
同时同轴宽场成像和反射共焦显微镜可改善皮肤癌的体内诊断
- 批准号:
10540329 - 财政年份:2020
- 资助金额:
$ 64.2万 - 项目类别:
Confocal video-mosaicking microscopy to guide surgery of superficially spreading skin cancers
共聚焦视频马赛克显微镜指导浅表扩散皮肤癌的手术
- 批准号:
10426308 - 财政年份:2019
- 资助金额:
$ 64.2万 - 项目类别:
Confocal video-mosaicking microscopy to guide surgery of superficially spreading skin cancers
共聚焦视频马赛克显微镜指导浅表扩散皮肤癌的手术
- 批准号:
10524146 - 财政年份:2019
- 资助金额:
$ 64.2万 - 项目类别:
Confocal video-mosaicking microscopy to guide surgery of superficially spreading skin cancers
共聚焦视频马赛克显微镜指导浅表扩散皮肤癌的手术
- 批准号:
10309506 - 财政年份:2019
- 资助金额:
$ 64.2万 - 项目类别:
Confocal video-mosaicking microscopy to guide surgery of superficially spreading skin cancers
共聚焦视频马赛克显微镜指导浅表扩散皮肤癌的手术
- 批准号:
10651700 - 财政年份:2019
- 资助金额:
$ 64.2万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A multicenter study in bronchoscopy combining Stimulated Raman Histology with Artificial intelligence for rapid lung cancer detection - The ON-SITE study
支气管镜检查结合受激拉曼组织学与人工智能快速检测肺癌的多中心研究 - ON-SITE 研究
- 批准号:
10698382 - 财政年份:2023
- 资助金额:
$ 64.2万 - 项目类别:
Hypothalamic Sleep-Wake Neuron Defects in Alzheimer’s disease
阿尔茨海默病中的下丘脑睡眠-觉醒神经元缺陷
- 批准号:
10770001 - 财政年份:2023
- 资助金额:
$ 64.2万 - 项目类别:
Deciphering Mechanisms of Astrocyte-BBB Interaction in Normal and Ischemic Stroke
解读正常和缺血性中风中星形胶质细胞-BBB相互作用的机制
- 批准号:
10585849 - 财政年份:2023
- 资助金额:
$ 64.2万 - 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 64.2万 - 项目类别: