The Health Consequences of Urban Scaling
城市规模扩张对健康的影响
基本信息
- 批准号:10199173
- 负责人:
- 金额:$ 37.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAreaBayesian ModelingCOVID-19COVID-19 pandemicChronic DiseaseCitiesCollaborationsCommunitiesCountyDataDiabetes MellitusDisease OutbreaksEmergency SituationEpidemicEthnic OriginEthnic groupExposure toFaceFailureFundingFutureHealthHeterogeneityHigh PrevalenceHispanicsHome environmentHospitalizationHousingIllinoisIncidenceIndustryInfectionInterventionLeadMarylandMeasuresMigrantNeighborhoodsNew York CityNot Hispanic or LatinoObesityOccupationalOccupationsOutcomePennsylvaniaPhiladelphiaPoliciesPopulationPopulation GroupPovertyPrevalenceRaceReportingRiskRisk FactorsRoleSamplingSchoolsServicesShelter facilitySick LeaveSocial DistanceStructureSubgroupTestingTimeTransportationUnemploymentUnited States National Institutes of HealthVirginiaWorkWorkplaceethnic minority populationhazardhealth care availabilityimprovedinfection riskmortalitypandemic diseasepreventprogramsracial and ethnicresponsesafety netsocialsocial inequalitysocial vulnerabilitysocioeconomicsteleworktooltransmission processtrendviral transmission
项目摘要
PROJECT SUMMARY
The COVID-19 pandemic has killed more than 100,000 people in the US, where very wide inequities in COVID-
19 outcomes have been reported for racial/ethnic minorities, including Hispanics. Hispanics suffer from specific
social vulnerabilities that lead to increased risk of infection, and increased prevalence specific risk factors that
lead to increased risk of severe illness. However, the number of confirmed cases in Hispanics may be severely
underestimated due to differential coverage of testing by area and population group. Moreover, most preliminary
measures of inequities in mortality have ignored the role of the different age structure of racial/ethnic groups.
Creating consistent estimates of racial/ethnic inequities in COVID-19 outcomes is therefore key to exploring
trends and predictors of these inequities, as a first step to improve the targeting of future interventions.
Concurrently, several non-pharmaceutical interventions (NPI) have been deployed to control the pandemic, The
capacity of racial/ethnic minorities to adhere to or benefit from (NPI) has been limited by several structural
barriers, including deficient social safety nets, a lower possibility of teleworking and a higher likelihood of working
in essential occupations. Overall, these structural constraints make isolation more challenging and increase the
likelihood of exposure to infection even in areas with social distancing. Continued viral transmission in specific
population subgroups makes the control of the pandemic more challenging for the entire population, and the
emergence of future waves more likely. In summary, Hispanics are one of the racial/ethnic groups most impacted
by the pandemic and, concurrently, one of the groups least able to benefit from NPI. For the current and future
waves of the pandemic, it is imperative to reduce the risk of infection across the population to reduce community
transmission; therefore. Therefore, understanding where and why health inequities are wider and whether NPI
work across different groups is key to preventing future waves by reducing overall levels community
transmission. We propose to systematically examine trends and predictors of heterogeneities of health inequities
in COVID-19 outcomes between Hispanics and non-Hispanic whites (NHW), and between the neighborhoods
where they predominantly live, across and within US cities, and the potential unequal effect of NPI in Hispanics
vs NHW. We will leverage data on COVID-19 outcomes by race/ethnicity and neighborhood from the 30 largest
cities of the US, corrected for imperfect testing quality and coverage; (2) social inequality measures; and (3) a
diverse set of compilations of state-, county- and city-level policies. By using a heterogeneous sample of cities,
we will uncover inequities and predictors of these inequities that will allow for more specific targeting of
interventions that may prove key in continuing to control current waves of the pandemic and to prevent future
waves. We will also demonstrate whether NPI may be less effective in Hispanics or predominantly Hispanic
neighborhoods. Since NPI remain the most effective tool for epidemic control, their failure on specific population
subgroups represents a hazard for the entire population.
Drexel Internal Data
项目摘要
199年,美国的大流行炸死了100,000多人,那里的covid-不平等现象非常广泛。
据报道,包括西班牙裔在内的种族/族裔少数群体,已经有19个成果。西班牙裔遭受特定的困扰
社会脆弱性导致感染风险增加,并增加患病率的特定风险因素
导致严重疾病的风险增加。但是,西班牙裔中确认的案件的数量可能严重
由于面积和人口组的测试覆盖率差异而低估了。而且,最初步的
死亡率不平等的措施忽略了种族/族裔群体不同年龄结构的作用。
因此,创建一致的估计与19个结果中的种族/种族不平等现象是探索的关键
这些不平等的趋势和预测因素,是改善未来干预措施的目标的第一步。
同时,已经部署了几种非药物干预措施(NPI),以控制大流行,
种族/族裔少数群体坚持或从(NPI)中受益的能力受到了几种结构的限制
障碍,包括不足的社会安全网,远程办公的可能性较低和工作可能性更高
在基本职业中。总体而言,这些结构性约束使隔离更具挑战性,并增加
即使在社会疏远的地区,也有可能感染感染的可能性。持续的病毒传播特异性
人口亚组使对整个人口的大流行的控制更具挑战性,
未来波浪的出现更有可能。总而言之,西班牙裔是受影响最大的种族/族裔之一
由大流行,同时是其中一个人中最不能够从NPI中受益的群体之一。对于当前和未来
大流行的波浪,必须降低整个人群感染的风险以减少社区
传播;所以。因此,了解健康不平等位置以及为什么更广泛的地方以及NPI是否
跨不同小组的工作是通过降低整体级别社区来防止未来波浪的关键
传播。我们建议系统地检查健康不平等异质性的趋势和预测指标
在西班牙裔与非西班牙裔白人(NHW)之间以及社区之间的共同成果中
他们主要居住在美国城市和内部的地方,以及NPI对西班牙裔的潜在不平等影响
vs NHW。我们将利用30个最大的种族/种族和社区来利用COVID-19结果的数据
美国的城市,以确保不完善的测试质量和覆盖范围; (2)社会不平等措施; (3)a
各种国家,县和城市级政策的汇编。通过使用异质的城市样本,
我们将揭示这些不平等的不平等和预测因素,这些不平等将允许更具体地定位
可能证明继续控制大流行的当前波并防止未来的干预措施
波浪。我们还将证明NPI在西班牙裔中的有效性可能较低还是主要是西班牙裔
社区。由于NPI仍然是流行病控制的最有效工具,因此它们在特定人群上的失败
亚组对整个人群表示危害。
DREXEL内部数据
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Usama Bilal其他文献
Usama Bilal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Usama Bilal', 18)}}的其他基金
相似国自然基金
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别:
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别:
Examining patterns of opioid overdose hotspots and opioid treatment deserts in California
检查加利福尼亚州阿片类药物过量热点和阿片类药物治疗沙漠的模式
- 批准号:
10679608 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别:
Using Causal Machine Learning Methods to Inform Tobacco Regulatory Science
使用因果机器学习方法为烟草监管科学提供信息
- 批准号:
10662955 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别:
Modelled estimation of population immunity for coccidioidomycosis and the role of immunologically naïve populations in the shifting epidemiology of coccidioidomycosis in California
球孢子菌病人群免疫力的模型估计以及免疫学上未接触过的人群在加利福尼亚州球孢子菌病流行病学变化中的作用
- 批准号:
10740731 - 财政年份:2023
- 资助金额:
$ 37.77万 - 项目类别: