Characterization of the Properties and Mechanisms of Photobiomodulation-Induced Axonal Block and Evaluation as a Treatment for Neuropathic Pain
光生物调节诱导的轴突阻滞的特性和机制的表征以及作为神经性疼痛治疗方法的评估
基本信息
- 批准号:10184296
- 负责人:
- 金额:$ 56.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAffectAmericanAnalgesicsAnimalsAxonBiologicalChronicClinicClinicalComputer ModelsConfocal MicroscopyDataDependenceDevelopmentDevice DesignsDevicesDoseElectron MicroscopyElementsEvaluationEyeFamily suidaeFiberFoundationsGoalsHealthHeatingHourHumanImageInterventionInvestigationLightLiteratureLongitudinal StudiesMicrotubulesMiniature SwineModelingNerveNerve BlockNeuritisNeuronsNociceptionOperative Surgical ProceduresOpioidPainPatientsPeripheral NervesPharmacologyPhysiologicalPilot ProjectsPre-Clinical ModelPreparationPropertyRadiofrequency Interstitial AblationRandomized Controlled TrialsRattusReportingResearchResearch ActivityRodentRodent ModelRoleSocietiesSourceSpinal GangliaSpottingsStructureSynaptic TransmissionSyndromeSystemTechniquesTechnologyTherapeuticTimeTissuesTranslationsUnited StatesVaricosityWorkanimal painbasebehavior testchronic paindirect applicationexperiencefirst-in-humanimplantable devicein vivoinsightinterestneurotransmissionnociceptive responseopioid overdosepain modelpain reductionpain reliefpainful neuropathyphotobiomodulationpre-clinicalpreclinical developmentpreclinical evaluationpreclinical studyprototyperelating to nervous systemresponsesciatic nervestandard of caretooltransmission processwound healing
项目摘要
Project Summary / Abstract
Recent research indicates that when ~808 to 830 nm light is applied in immediate juxtaposition to target neurons
or axons (within mm) through invasive techniques, C and Aδ fibers that convey pain-related information can
temporarily and reversibly be “turned off” without affecting the functionality of the larger A fibers. If further
developed, this photobiomodulation (PBM) effect has exciting possibilities as an implantable device-based
treatment for various chronic pain syndromes, including neuropathic pains. This project takes important steps to
develop fundamental and mechanistic understanding, and to provide a foundation for translation.
In terms of fundamental and mechanistic understanding – first, the effect of PBM dose and wavelength on
axonal block (in an ex vivo peripheral nerve preparation) and nociceptive response (in an in vivo rodent pain
model) will be rigorously characterized. These data will provide important mechanistic insight and translational
value. Second, the role of observed microtubule destabilization and the resulting axonal varicosities will be
explored as contributors to the mechanism of the independently-observed action potential block. We will
determine whether or not there is a correlation between effect size (functional data) and degree of microtubule
instability (confocal microscopy and electron microscopy data). Computational models will be used to evaluate
the effect of axonal varicosities on action potential propagation. Finally, the effect of pharmacological microtubule
(de)stabilizers on PAB dose will be assessed.
In terms of translational activities – the project includes development of pre-clinical-grade systems that allow
PBM at the nerve to be applied chronically with the ultimate goal of demonstrating that chronic PBM can provide
a persistent and profound analgesic effect in a large animal pain model (porcine). A fully implantable system
based on an existing commercial neurostimulator will enable PBM to be delivered over extended periods of time.
A percutaneous system will require repeated interventions over time (e.g., weekly interventions on the order of
minutes), but will enable use of higher peak powers not achievable with the fully implantable system. The
systems will be used in a porcine pain model (peripheral neuritis) that better mimicked the human response to
pharmacological interventions than rodent models have been able to do. The pre-clinical studies will include a
30-day pilot study followed by a 6-month study in minipigs.
In summary, this project will expand fundamental understanding of PBM-induced axonal block with an eye
toward translational devices suitable for the treatment of chronic pain.
项目摘要 /摘要
最近的研究表明,当〜808至830 nm的光被立即并置以靶向神经元时
或通过侵入性技术,传达与疼痛相关信息的C和Aδ纤维可以
暂时和可逆地被“关闭”,而不会影响较大的A纤维的功能。如果进一步
开发的,这种光生物调节(PBM)效应具有令人兴奋的可能性
各种慢性疼痛综合征的治疗,包括神经性疼痛。该项目采取重要步骤
发展基本和机械的理解,并为翻译提供基础。
就基本和机械理解而言 - 首先,PBM剂量和波长对
轴突块(在体内外周神经制剂中)和伤害感受反应(在体内啮齿动物疼痛中
模型)将是严格的特征。这些数据将提供重要的机械洞察力和翻译
价值。其次,观察到的微管破坏稳定的作用和由此产生的轴突静脉曲张将是
探索是独立观察到的动作电势块机制的贡献者。我们将
确定效应大小(功能数据)和微管程度之间是否存在相关性
不稳定性(共聚焦显微镜和电子显微镜数据)。计算模型将用于评估
轴突静脉曲张对动作电势传播的影响。最后,药物微管的作用
(DE)将评估PAB剂量的稳定剂。
在翻译活动方面 - 项目包括开发临床前级系统,允许
pBM在神经处长期应用,其最终目标是证明慢性PBM可以提供
在大型动物疼痛模型(猪)中持久而深刻的镇痛作用。完全植入的系统
基于现有的商业神经刺激器,将使PBM在长时间内交付。
经皮系统将需要随着时间的推移重复干预(例如,每周干预措施
分钟),但将实现完全植入系统无法实现的较高峰值功率。
系统将用于猪疼痛模型(周围神经毒性),该模型更好地模仿了人类对
与啮齿动物模型相比,药理学干预措施已经能够做到。临床前研究将包括
30天的试点研究,然后在Minipigs进行了6个月的研究。
总而言之,该项目将扩大对PBM诱导的轴突块的基本理解
迈向适合治疗慢性疼痛的翻译设备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juanita J Anders其他文献
Juanita J Anders的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juanita J Anders', 18)}}的其他基金
Characterization of the Properties and Mechanisms of Photobiomodulation-Induced Axonal Block and Evaluation as a Treatment for Neuropathic Pain
光生物调节诱导的轴突阻滞的特性和机制的表征以及作为神经病理性疼痛治疗的评估
- 批准号:
10642688 - 财政年份:2021
- 资助金额:
$ 56.91万 - 项目类别:
Characterization of the Properties and Mechanisms of Photobiomodulation-Induced Axonal Block and Evaluation as a Treatment for Neuropathic Pain
光生物调节诱导的轴突阻滞的特性和机制的表征以及作为神经性疼痛治疗方法的评估
- 批准号:
10399588 - 财政年份:2021
- 资助金额:
$ 56.91万 - 项目类别:
ASTROCYTIC STRUCTURAL POLARITY AND ITS CHANGE IN GLIOSIS
星形胶质细胞的结构极性及其在神经胶质细胞中的变化
- 批准号:
3401025 - 财政年份:1985
- 资助金额:
$ 56.91万 - 项目类别:
ASTROCYTIC STRUCTURAL POLARITY AND ITS CHANGE IN GLIOSIS
星形胶质细胞的结构极性及其在神经胶质细胞中的变化
- 批准号:
3401026 - 财政年份:1985
- 资助金额:
$ 56.91万 - 项目类别:
ASTROCYTIC STRUCTURAL POLARITY AND ITS CHANGE IN GLIOSIS
星形胶质细胞的结构极性及其在神经胶质细胞中的变化
- 批准号:
3401022 - 财政年份:1985
- 资助金额:
$ 56.91万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
- 批准号:
10750025 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别: