Critical role of Mitochondrial Fission/Fusion in Regulation of Microvascular Endothelial Function
线粒体裂变/融合在微血管内皮功能调节中的关键作用
基本信息
- 批准号:10180126
- 负责人:
- 金额:$ 53.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdipose tissueAgeBlood VesselsBlood flowCardiovascular DiseasesCardiovascular PathologyCell ProliferationCellsChimeric ProteinsChronicCoronaryCoronary ArteriosclerosisCoronary heart diseaseDataDevelopmentDilatorDiseaseDynaminElementsEndothelial CellsEndotheliumEquilibriumExhibitsExposure toFunctional disorderGenerationsGeneticGlucoseGoalsHumanHydrogen PeroxideHypoxiaImpairmentIn VitroIndividualInflammationInflammatoryInvestigationLearningLinkMediatingMediator of activation proteinMicrocirculationMitochondriaMorphologyNitric OxideOutcomeOxidation-ReductionOxidative StressPathway interactionsPatientsPharmacologyPhenotypePhysiologicalProcessProductionProteinsPublishingRegional Blood FlowRegulationResistanceRiskRisk FactorsRoleSignal PathwaySignal TransductionSmooth MuscleStimulusStressTestingTherapeuticTissuesToxic effectUp-RegulationVascular EndotheliumVasodilator AgentsVasomotorWorkacute stressarteriolebasecancer therapycardioprotectioncardiovascular risk factorclinical Diagnosisimprovedknock-downnoveloverexpressionparacrinepreconditioningpressurepreventresponsestressortissue injurytooltreatment strategyvascular injuryvascular stress
项目摘要
Increased age, presence of other cardiovascular risk factors or previous treatment with anti-cancer therapy are
among the leading risk factors for development of coronary artery disease (CAD). While CAD is traditionally
viewed as a large vessel disease substantial recent data indicate that impaired microvascular function
contributes substantially to pathophysiology and outcomes in cardiovascular disease. Subjects with a clinical
diagnosis of CAD exhibit loss of NO-mediated microvascular flow-mediated dilation (FMD) concurrent with
upregulation of mitochondrial hydrogen peroxide (H2O2), promoting local inflammation and cellular proliferation.
Understanding the contributing mechanisms that regulate the switch from NO to H2O2 may help to reduce the
risk of tissue injury from vascular paracrine redox toxicity.
We have identified several components of the signaling pathway that changes the mediator of FMD from NO to
H2O2. The common feature of each of these pathways is excess endothelial mitochondrial ROS generation.
Mitochondrial fission and fusion, known regulators of ROS production, are tightly regulated by a group of pro-
fission and pro-fusion proteins suggesting the possibility that these factors determine the mediator of FMD in the
human microvasculature, an unexplored question. The goal of this study is to test the hypothesis that
mitochondrial fission/fusion is critically linked to the mediator of FMD in the human microcirculation. Based on
preliminary data we expect that regulators of fission/fusion are fundamental mediators of mitochondrial ROS
production and determinants of whether shear elicits release of endothelial NO or H2O2.
Mitochondria and ROS are also involved in hypoxic preconditioning (HPC), a stimulus that improves tissue
tolerance to stressors and protects against disease. Very little is known about HPC and vascular protection with
no studies in the microcirculation. Our preliminary data support a role for mitochondrial fission and fusion in
mediating HPC. This potential mechanism for HPC induced vascular protection will be explored. We will study
fresh human coronary and adipose arterioles and primary human microvascular endothelial cells in vitro using
pharmacological and genetic tools to manipulate fission and fusion mediators and determine how these changes
contribute to alterations in mechanisms of FMD observed in CAD or after acute stress (elevated glucose,
intraluminal pressure). We will test the overreaching hypothesis that mitochondrial fission is associated with H2O2
while mitochondrial fusion promotes physiological NO mediated dilation to flow.
Aim 1: Changes in fission/fusion or its regulators are necessary and sufficient to explain the
transition in the mediator of FMD from NO to H2O2 during CAD or vascular stress (IILP or HG)
Aim 2: Investigate whether the mechanism by which hypoxic vascular preconditioning improves
microvascular function after acute stress (IILP, HG) or in subjects with CAD involves an increase in
mitochondrial fusion.
增加年龄,其他心血管危险因素或抗癌治疗的先前治疗是
在冠状动脉疾病(CAD)发展的主要危险因素之一。而CAD传统上是
被视为大容器疾病,最近的数据表明微血管功能受损
在心血管疾病中的病理生理学和结果基本上做出了贡献。具有临床的受试者
CAD的诊断表现出无介导的微血管流动介导的扩张(FMD)的丧失与
线粒体过氧化氢(H2O2)的上调,促进局部炎症和细胞增殖。
了解调节从NO到H2O2转换的贡献机制可能有助于减少
血管旁分泌氧化还原毒性因组织损伤的风险。
我们已经确定了信号通路的几个组件,这些组件将FMD的介体从NO变为
H2O2。这些途径中每一种的共同特征是过量的内皮线粒体ROS产生。
线粒体裂变和融合(已知的ROS产生调节剂)受一组促值的严格调节
裂变和促融合蛋白表明这些因素决定了FMD介体的可能性
人类微脉管系统,一个未开发的问题。这项研究的目的是检验以下假设
线粒体裂变/融合与人类微循环中FMD的介体密切相关。基于
初步数据我们期望裂变/融合的调节因子是线粒体ROS的基本介质
生产和决定剪切是否引发内皮NO或H2O2的释放。
线粒体和ROS也参与缺氧预处理(HPC),这是一种改善组织的刺激
对压力源的耐受性并预防疾病。关于HPC和血管保护的知之甚少
没有微循环的研究。我们的初步数据支持线粒体裂变和融合的作用
介导HPC。将探索这种HPC诱导血管保护的潜在机制。我们将学习
新鲜的人类冠状动脉和脂肪动脉和原发性人类微血管内皮细胞体外使用
处理裂变和融合介质的药理和遗传工具,并确定这些改变如何变化
有助于改变CAD或急性应激后观察到的FMD机制的改变(葡萄糖升高,
腔内压力)。我们将测试线粒体裂变与H2O2相关的过度假设
线粒体融合会促进生理无介导的流量扩张。
目标1:裂变/融合或其调节剂的变化是必要的,足以解释
FMD介体在CAD或血管应力(IILP或HG)中从NO到H2O2过渡(IILP或HG)
目标2:研究低氧血管预处理的机制是否有所改善
急性应激(IILP,HG)或CAD受试者的微血管功能涉及增加
线粒体融合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas M Beyer其他文献
Quantitative characterization of nanometer-scale electric fields via momentum-resolved STEM
通过动量分辨 STEM 定量表征纳米级电场
- DOI:
10.1017/s1431927621007947 - 发表时间:
2021 - 期刊:
- 影响因子:2.8
- 作者:
Andreas M Beyer;M. Munde;S. Firoozabadi;Damien Heimes;T. Grieb;A. Rosenauer;K. Müller;K. Volz - 通讯作者:
K. Volz
Self-Catalyzed GaP Nanowire MOVPE Growth on Si
Si 上自催化 GaP 纳米线 MOVPE 生长
- DOI:
10.1016/j.jcrysgro.2023.127138 - 发表时间:
2023 - 期刊:
- 影响因子:1.8
- 作者:
David Krug;J. Glowatzki;Franziska Hüppe;M. Widemann;F. Gruber;Andreas M Beyer;K. Volz - 通讯作者:
K. Volz
Impact of AlN buffer layers on MBE grown cubic GaN layers
AlN 缓冲层对 MBE 生长的立方 GaN 层的影响
- DOI:
10.1117/12.2648960 - 发表时间:
2023 - 期刊:
- 影响因子:3.2
- 作者:
J. Schörmann;M. F. Zscherp;Nils Mengel;D. Hofmann;Vitalii Lider;Badrosadat Ojaghi Dogahe;C. Becker;Andreas M Beyer;K. Volz;S. Chatterjee - 通讯作者:
S. Chatterjee
Bioinformatic Analysis of Gene Sets Regulated by Ligand-Activated and Dominant-Negative Peroxisome Proliferator–Activated Receptor &ggr; in Mouse Aorta
小鼠主动脉中配体激活和显性负性过氧化物酶体增殖物激活受体调控的基因组的生物信息学分析
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
H. Keen;C. Halabi;Andreas M Beyer;W. D. de Lange;Xuebo Liu;N. Maeda;F. Faraci;T. Casavant;C. Sigmund - 通讯作者:
C. Sigmund
Single- and dual-variant atomic ordering in GaAsP compositionally graded buffers on GaP and Si substrates
GaP 和 Si 衬底上的 GaAsP 成分梯度缓冲液中的单变体和双变体原子排序
- DOI:
10.1016/j.jcrysgro.2018.10.007 - 发表时间:
2019 - 期刊:
- 影响因子:1.8
- 作者:
Markus Feifel;J. Belz;Andreas M Beyer;K. Volz;J. Ohlmann;D. Lackner;F. Dimroth - 通讯作者:
F. Dimroth
Andreas M Beyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas M Beyer', 18)}}的其他基金
Critical role of Mitochondrial Fission/Fusion in Regulation of Microvascular Endothelial Function
线粒体裂变/融合在微血管内皮功能调节中的关键作用
- 批准号:
10450793 - 财政年份:2021
- 资助金额:
$ 53.71万 - 项目类别:
Critical role of Mitochondrial Fission/Fusion in Regulation of Microvascular Endothelial Function
线粒体裂变/融合在微血管内皮功能调节中的关键作用
- 批准号:
10655397 - 财政年份:2021
- 资助金额:
$ 53.71万 - 项目类别:
Pivotal Role of Mitochondrial Telomerase in Regulation of Vascular Tone and Redox Homeostasis
线粒体端粒酶在血管张力和氧化还原稳态调节中的关键作用
- 批准号:
9307494 - 财政年份:2017
- 资助金额:
$ 53.71万 - 项目类别:
Pivotal Role of Mitochondrial Telomerase in Regulation of Vascular Tone and Redox Homeostasis
线粒体端粒酶在血管张力和氧化还原稳态调节中的关键作用
- 批准号:
9886254 - 财政年份:2017
- 资助金额:
$ 53.71万 - 项目类别:
Differentiation of mitochondrial vs. nuclear function of telomerase
端粒酶线粒体与核功能的区分
- 批准号:
8681115 - 财政年份:2014
- 资助金额:
$ 53.71万 - 项目类别:
相似国自然基金
基于改善脂肪组织卵磷脂合成探讨葛根芩连汤降血糖的机制
- 批准号:82360799
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
糖尿病脂肪组织中SIRT3表达降低进而上调外泌体miR-146b-5p促进肾小管脂毒性的机制研究
- 批准号:82370731
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
CXCL1/CXCR2信号轴上调Bcl-2促进筋膜定植巨噬细胞迁移在皮下脂肪组织原位再生中的机制研究
- 批准号:82360615
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
心外膜脂肪组织铁死亡激活白介素-1α在房颤心房纤维化中的机制研究
- 批准号:82300349
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载岩藻黄质的裸藻β-葡聚糖/zein载运体系构建及Dectin-1介导靶向脂肪组织调节脂质代谢机制
- 批准号:32372244
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Optimizing Small Molecule Mechanomimetics to Treat Age-related Osteoporosis.
优化小分子力学模拟治疗与年龄相关的骨质疏松症。
- 批准号:
10807685 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Regulation of LDAM by autopahgy in the aging brain
衰老大脑中自噬对 LDAM 的调节
- 批准号:
10900994 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Prolactin receptor signaling regulates adaptation of the heart during pregnancy and postpartum
催乳素受体信号传导调节怀孕和产后心脏的适应
- 批准号:
10662892 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Mechanisms of adipocyte loss in mouse models of familial partial lipodystrophy 2
家族性部分脂肪营养不良小鼠模型脂肪细胞丢失的机制2
- 批准号:
10748790 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
A novel agent for preventing fatty degeneration of muscles in LGMD2B
一种预防 LGMD2B 肌肉脂肪变性的新型药物
- 批准号:
10542523 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别: