Plasmonic Inactivation of Virus and Mycoplasma Contaminants
病毒和支原体污染物的等离子体灭活
基本信息
- 批准号:10179915
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibodiesBacteriaBenchmarkingBiologicalBioreactorsBiotechnologyCOVID-19 pandemicCaliberCategoriesCell Culture TechniquesCell LineChemicalsClinicalContainmentDangerousnessDevelopmentDiseaseDisinfectantsElectromagnetic FieldsElectromagneticsEndotoxinsEnsureExcisionFiltrationGenerationsGoalsGoldGuidelinesHealthHumanHuman bodyImmunology procedureIndustrializationIndustryIndustry StandardInfrared RaysInvestigationLaboratoriesLasersLightMagnetismMediatingMembraneMethodsMicrobeMolecularMonoclonal AntibodiesMycoplasmaNanostructuresNanotechnologyOpticsPathway interactionsPatient-Focused OutcomesPharmaceutical PreparationsPharmacologic SubstancePhotochemistryPrincipal InvestigatorProcessProductionPropertyProteinsPublic HealthRadiationReactive Oxygen SpeciesReproducibilityRiskSamplingSchemeShapesSpecificitySterilizationTechnologyTemperatureTimeTissue SampleTissuesTreatment EfficacyUltrafiltrationUltraviolet RaysViralVirionVirusVirus InactivationWorkabsorptionbactericidecostemerging antibiotic resistanceflexibilityfundamental researchimprovedinnovationirradiationmagnetic fieldmanufacturing processmicrobialmonoclonal antibody productionnanomaterialsnanoparticlenanoplasmonicpathogenpathogenic microbephotonicsplasmonicspoint of carepressurepreventprogramsresponsesuperparamagnetismultraviolet irradiation
项目摘要
SUMMARY
Biological pharmaceuticals, or “biologics”, are among the most important pharmaceuticals in development
today, and their safe manufacture is absolutely crucial for human health. A major problem faced by operators
of bioreactors, at both the laboratory scale and industrial scale, is microbial contamination as an integral risk of
any process that derives from live cell lines. The fundamental concern is to ensure that contaminated biologics
are not injected into the human body. To warrant contamination free biologics a terminal sterilization is often
necessary. The central challenge in this step is the inactivation or removal of microbial contaminates without
causing harm to the precious biologics. This work focuses on antibodies as representative biologics. Especially
for viral and mycoplasma contaminations the terminal sterilization step remains challenging due to the small
size of the pathogens. The industry standard today is removal through passive filtration using filter membranes
with pore diameters smaller or of the same size as the virus particles. This approach requires, however, long
processing times associated with high costs. Furthermore, ultrafiltration can induce antibody self-association
and is not compatible with emerging flexible, small-scale, point-of-care biologics fabrication technologies. The
need for new selective microbe inactivation strategies is also not limited to the field of biologics fabrication. The
Covid19 pandemic has recently illustrated the need for reliable virus inactivation strategies that selectively act
on the virus in tissues but not on proteins, for instance, to allow immunological assays of infected samples
outside of high containment laboratories. Light has sterilization properties, and UV-light has long been used to
inactivate a broad range of microbial pathogens. Unfortunately, it lacks specificity and also damages precious
biologics through reactive photochemistries driven by molecular absorptions in the UV range of the
electromagnetic spectrum. To overcome the shortcomings of both ultrafiltration and UV-irradiation as microbe
inactivation strategies, this proposal develops a plasmonically enhanced photonic inactivation method that
utilizes near-infrared (NIR) light for the selective inactivation of viruses and mycoplasma. As NIR radiation does
not overlap with molecular absorptions, the collateral damage on biologics is minimal. The proposed work will
reveal the fundamental working principles underlying plasmonic pathogen inactivation and implement magnetic
plasmonic nanoparticles (NPs) that allow for an easy, contact-free removal of the nanomaterials from the
samples after sterilization. The specific aims of this application are to:
Aim 1: Achieve Reliable Virus Inactivation with NIR Light through Plasmonic Enhancement
Aim 2: Demonstrate a Plasmon-Enhancement Strategy for Mycoplasma Inactivation with NIR Light
Aim 3: Demonstrate Scalable Clearance of Virus and Mycoplasma with Magnetic Plasmonic NPs
概括
生物药品或“生物制剂”是开发中最重要的药品之一
如今,它们的安全生产对于人类健康来说绝对至关重要,这是运营商面临的一个主要问题。
无论是在实验室规模还是工业规模的生物反应器中,微生物污染都是生物反应器的一个整体风险
任何源自活细胞系的过程最根本的问题是确保生物制品受到污染。
不注射到人体中,为了保证无污染的生物制剂,通常需要进行最终灭菌。
此步骤的主要挑战是在不进行任何处理的情况下灭活或去除微生物污染物。
这项工作特别关注作为代表性生物制品的抗体。
对于病毒和支原体污染,由于微小的污染,最终灭菌步骤仍然具有挑战性。
当今的行业标准是通过使用滤膜的被动过滤来去除。
然而,这种方法需要较长的孔径。
处理时间长且成本高。此外,超滤可诱导抗体自缔合。
并且与新兴的灵活、小规模、即时护理生物制剂制造技术不兼容。
对新的选择性微生物灭活策略的需求也不仅限于生物制剂制造领域。
最近的 Covid19 大流行表明需要有选择性地采取可靠的病毒灭活策略
例如,作用于组织中的病毒而不是蛋白质,以便对受感染的样本进行免疫分析
在高密闭实验室之外,光具有灭菌特性,而紫外线长期以来一直被用来灭菌。
不幸的是,它缺乏特异性并且还会损害珍贵的微生物。
通过由紫外线范围内的分子吸收驱动的反应光化学来制备生物制剂
克服了超滤和紫外线照射作为微生物的缺点。
失活策略,该提案开发了一种等离子体增强光子失活方法,
利用近红外 (NIR) 光选择性灭活病毒和支原体,就像近红外辐射一样。
与分子吸收不重叠,对生物制品的附带损害是最小的。
揭示等离子体病原体灭活的基本工作原理并实施磁性
等离激元纳米粒子 (NP),可以轻松、无接触地从表面去除纳米材料
该应用的具体目的是:
目标 1:通过等离子体增强,利用近红外光实现可靠的病毒灭活
目标 2:展示近红外光灭活支原体的等离激元增强策略
目标 3:展示利用磁性等离子纳米颗粒可大规模清除病毒和支原体
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHYAMSUNDER ERRAMILLI其他文献
SHYAMSUNDER ERRAMILLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHYAMSUNDER ERRAMILLI', 18)}}的其他基金
Plasmonic Inactivation of Virus and Mycoplasma Contaminants
病毒和支原体污染物的等离子体灭活
- 批准号:
10640258 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Plasmonic Inactivation of Virus and Mycoplasma Contaminants
病毒和支原体污染物的等离子体灭活
- 批准号:
10455426 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
INFRARED MICROSPECTROSCOPE WITH 100 NM RESOLUTION
分辨率为 100 nm 的红外显微镜
- 批准号:
6056757 - 财政年份:1998
- 资助金额:
$ 33万 - 项目类别:
INFRARED MICROSPECTROSCOPE WITH 100 NM RESOLUTION
分辨率为 100 nm 的红外显微镜
- 批准号:
2716977 - 财政年份:1998
- 资助金额:
$ 33万 - 项目类别:
相似国自然基金
纳米抗体工程化细菌外膜囊泡联合光免疫制剂激活cGAS-STING通路诱导大肠癌抗肿瘤免疫的机制研究
- 批准号:82373775
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
双特异性抗体囊泡对胞内细菌感染的免疫综合机制研究
- 批准号:82304366
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于EvolvR技术与噬菌体展示的纳米抗体细菌体内连续定向进化系统研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
细菌外膜囊泡联合递送新生抗原和PD-L1抗体的肿瘤免疫治疗研究
- 批准号:82003259
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
靶向细菌自转运粘附素中庚糖基化修饰的单克隆抗体的制备
- 批准号:21807112
- 批准年份:2018
- 资助金额:24.2 万元
- 项目类别:青年科学基金项目
相似海外基金
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
- 批准号:
10555093 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Vanderbilt Antibody and Antigen Discovery for Clostridioides difficile Vaccines
艰难梭菌疫苗的范德比尔特抗体和抗原发现
- 批准号:
10625686 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别: