Plasmonic Inactivation of Virus and Mycoplasma Contaminants
病毒和支原体污染物的等离子体灭活
基本信息
- 批准号:10179915
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibodiesBacteriaBenchmarkingBiologicalBioreactorsBiotechnologyCOVID-19 pandemicCaliberCategoriesCell Culture TechniquesCell LineChemicalsClinicalContainmentDangerousnessDevelopmentDiseaseDisinfectantsElectromagnetic FieldsElectromagneticsEndotoxinsEnsureExcisionFiltrationGenerationsGoalsGoldGuidelinesHealthHumanHuman bodyImmunology procedureIndustrializationIndustryIndustry StandardInfrared RaysInvestigationLaboratoriesLasersLightMagnetismMediatingMembraneMethodsMicrobeMolecularMonoclonal AntibodiesMycoplasmaNanostructuresNanotechnologyOpticsPathway interactionsPatient-Focused OutcomesPharmaceutical PreparationsPharmacologic SubstancePhotochemistryPrincipal InvestigatorProcessProductionPropertyProteinsPublic HealthRadiationReactive Oxygen SpeciesReproducibilityRiskSamplingSchemeShapesSpecificitySterilizationTechnologyTemperatureTimeTissue SampleTissuesTreatment EfficacyUltrafiltrationUltraviolet RaysViralVirionVirusVirus InactivationWorkabsorptionbactericidecostemerging antibiotic resistanceflexibilityfundamental researchimprovedinnovationirradiationmagnetic fieldmanufacturing processmicrobialmonoclonal antibody productionnanomaterialsnanoparticlenanoplasmonicpathogenpathogenic microbephotonicsplasmonicspoint of carepressurepreventprogramsresponsesuperparamagnetismultraviolet irradiation
项目摘要
SUMMARY
Biological pharmaceuticals, or “biologics”, are among the most important pharmaceuticals in development
today, and their safe manufacture is absolutely crucial for human health. A major problem faced by operators
of bioreactors, at both the laboratory scale and industrial scale, is microbial contamination as an integral risk of
any process that derives from live cell lines. The fundamental concern is to ensure that contaminated biologics
are not injected into the human body. To warrant contamination free biologics a terminal sterilization is often
necessary. The central challenge in this step is the inactivation or removal of microbial contaminates without
causing harm to the precious biologics. This work focuses on antibodies as representative biologics. Especially
for viral and mycoplasma contaminations the terminal sterilization step remains challenging due to the small
size of the pathogens. The industry standard today is removal through passive filtration using filter membranes
with pore diameters smaller or of the same size as the virus particles. This approach requires, however, long
processing times associated with high costs. Furthermore, ultrafiltration can induce antibody self-association
and is not compatible with emerging flexible, small-scale, point-of-care biologics fabrication technologies. The
need for new selective microbe inactivation strategies is also not limited to the field of biologics fabrication. The
Covid19 pandemic has recently illustrated the need for reliable virus inactivation strategies that selectively act
on the virus in tissues but not on proteins, for instance, to allow immunological assays of infected samples
outside of high containment laboratories. Light has sterilization properties, and UV-light has long been used to
inactivate a broad range of microbial pathogens. Unfortunately, it lacks specificity and also damages precious
biologics through reactive photochemistries driven by molecular absorptions in the UV range of the
electromagnetic spectrum. To overcome the shortcomings of both ultrafiltration and UV-irradiation as microbe
inactivation strategies, this proposal develops a plasmonically enhanced photonic inactivation method that
utilizes near-infrared (NIR) light for the selective inactivation of viruses and mycoplasma. As NIR radiation does
not overlap with molecular absorptions, the collateral damage on biologics is minimal. The proposed work will
reveal the fundamental working principles underlying plasmonic pathogen inactivation and implement magnetic
plasmonic nanoparticles (NPs) that allow for an easy, contact-free removal of the nanomaterials from the
samples after sterilization. The specific aims of this application are to:
Aim 1: Achieve Reliable Virus Inactivation with NIR Light through Plasmonic Enhancement
Aim 2: Demonstrate a Plasmon-Enhancement Strategy for Mycoplasma Inactivation with NIR Light
Aim 3: Demonstrate Scalable Clearance of Virus and Mycoplasma with Magnetic Plasmonic NPs
概括
生物药物或“生物制剂”是开发中最重要的药物之一
今天,他们的安全制造对于人类健康至关重要。运营商面临的一个主要问题
在实验室规模和工业规模上,生物反应器的构成者都是微生物污染,这是不可或缺的风险
从活细胞系派生的任何过程。根本关注的是确保受污染的生物制剂
没有注入人体。为了保证无污染的无污染物制剂,终末灭菌通常是
必要的。此步骤中的核心挑战是灭活或去除微生物污染物而没有
对宝贵的生物制剂造成伤害。这项工作的重点是抗体作为代表性生物制剂。尤其
对于病毒和支原体污染,末端灭菌步骤由于小而挑战
病原体的大小。当今的行业标准通过使用过滤机制通过被动过滤去除
孔直径较小或与病毒颗粒相同。但是,这种方法需要很长的时间
与高成本相关的处理时间。此外,超滤可以诱导抗体自我关联
并且与新兴的柔性,小规模的护理生物制造技术不兼容。
需要新的选择性微生物灭活策略的需求也不仅限于生物制造领域。这
Covid19大流行最近说明了对可靠的病毒灭活策略的必要性,这些策略有选择地作用
例如,在组织中的病毒上,而不是蛋白质上的病毒,以允许对感染样品进行免疫学评估
在高遏制实验室之外。光具有灭菌特性,紫外线长期以来一直用于
灭活广泛的微生物病原体。不幸的是,它缺乏特殊性,也损害了珍贵
通过反应性光化学的生物制剂,由分子滥用器驱动的紫外线范围
电磁频谱。为了克服超滤清和紫外线的缺点,作为微生物
灭活策略,该提案开发了一种塑料增强的光子灭活方法,
利用近红外(NIR)光的选择性灭活病毒和支原体。就像NIR辐射一样
并非与分子滥用的重叠,而是对生物制剂的附带损害很小。拟议的工作将
揭示浆液病原体失活的基本工作原理并实施磁性
等离子体纳米颗粒(NP),可以轻松,无接触的纳米材料从
灭菌后样品。本应用程序的具体目的是:
目标1:通过血浆增强实现NIR光的可靠病毒灭活
AIM 2:用NIR Light展示支原体灭活的等离子体增强策略
AIM 3:用磁性等离子体NPS证明病毒和支原体的可扩展清除率
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHYAMSUNDER ERRAMILLI其他文献
SHYAMSUNDER ERRAMILLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHYAMSUNDER ERRAMILLI', 18)}}的其他基金
Plasmonic Inactivation of Virus and Mycoplasma Contaminants
病毒和支原体污染物的等离子体灭活
- 批准号:
10640258 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Plasmonic Inactivation of Virus and Mycoplasma Contaminants
病毒和支原体污染物的等离子体灭活
- 批准号:
10455426 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
INFRARED MICROSPECTROSCOPE WITH 100 NM RESOLUTION
分辨率为 100 nm 的红外显微镜
- 批准号:
6056757 - 财政年份:1998
- 资助金额:
$ 33万 - 项目类别:
INFRARED MICROSPECTROSCOPE WITH 100 NM RESOLUTION
分辨率为 100 nm 的红外显微镜
- 批准号:
2716977 - 财政年份:1998
- 资助金额:
$ 33万 - 项目类别:
相似国自然基金
双特异性抗体囊泡对胞内细菌感染的免疫综合机制研究
- 批准号:82304366
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于群体感应实现瘤内特异性免疫激活与PD1抗体递送的活体细菌药物及其抗癌机制研究
- 批准号:82303774
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
纳米抗体工程化细菌外膜囊泡联合光免疫制剂激活cGAS-STING通路诱导大肠癌抗肿瘤免疫的机制研究
- 批准号:82373775
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于EvolvR技术与噬菌体展示的纳米抗体细菌体内连续定向进化系统研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于EvolvR技术与噬菌体展示的纳米抗体细菌体内连续定向进化系统研究
- 批准号:32260623
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
相似海外基金
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
- 批准号:
10555093 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Vanderbilt Antibody and Antigen Discovery for Clostridioides difficile Vaccines
艰难梭菌疫苗的范德比尔特抗体和抗原发现
- 批准号:
10625686 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别: