Non-cleaved Electro-Mechanical Expansion (NEME) technology for super-resolution imaging of biological samples with conventional optical microscopes
非切割机电扩展 (NEME) 技术,用于使用传统光学显微镜对生物样品进行超分辨率成像
基本信息
- 批准号:10176530
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-10 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAntibodiesArchitectureBenchmarkingBiologicalBrainCellsCellular StructuresChemistryCiliaCleaved cellCrowdingCultured CellsDNADevelopmentDiseaseDyesElectron MicroscopyElectrostaticsFaceGelGenomeHybridsImageImaging TechniquesImaging technologyIsotropyLeadLightMechanicsMentorsMethodologyMethodsMicroscopeMicroscopyMusNucleic AcidsNucleosomesOpticsOutcomePathologicPhasePlayPolymer ChemistryPolymersProcessProteinsProteomicsRNAReagentResearchResolutionRoleSamplingSignal TransductionSpecimenSpeedStructureSubcellular structureSynapsesSynaptic TransmissionSystemTechniquesTechnologyThickTissuesTranscriptional RegulationValidationWorkbasebiological systemsbrain tissuecell typecomplex biological systemsdiffraction of lightexperimental studyimprovedinsightmaterials sciencemechanical forcenanonanoscaleprotein complexreconstructiontechnology validationtranscriptome
项目摘要
Abstract
Understanding the nanoscale organizations of biomolecules in complex biological systems such as the brain, can not only
provide fundamental biological insights but also help in the discovery of new targets and technologies for treating
diseases. Optical microscopy provides a convenient way for imaging biological samples using readily available
dyes/antibodies. However, the spatial resolution of conventional optical microscopes is limited to 300 nm due to the
diffraction of light waves. On the other hand, existing super-resolution optical techniques, face challenges in scalability to
thick tissues and require extremely expensive hardware, which limits their application. Recently discovered expansion
microscopy (ExM), which is based on physically expanding the sample (embedded in a swellable gel) by about 4.5 x and
thus, achieving an effective resolution of 70 nm, is scalable and compatible with conventional optical hardware. But, its
resolution of 70 nm is not sufficient for observing subcellular structures. Though the resolution can be improved through
iterated ExM (iExM), it results in low biomolecular yield as it requires transfer of biomolecules from one gel to another,
with the cleaving of the first gel. The proposed work aims to develop a technology for expansion, where gel cleaving or
transfer of biomolecules is not required, resulting in high biomolecular yields. This technology utilizes both electrostatic
and mechanical forces for expansion to achieve high expansion factors (20x to 100x), thus leading to 300 / 20 ≈ 15 nm to
300 / 100 ≈ 3 nm resolution. This technology, which I termed non-cleaved electro-mechanical expansion (NEME) is
different from previous expansion technologies which utilizes only electrostatic forces for expansion. The mentored phase
of the proposed work will involve the development and characterization of the NEME technology while in the
independent phase, NEME will be extended for imaging of dense protein complexes as well as RNA and DNA. NEME
technology can lead to super-resolution imaging without any specialized or expensive hardware and can also provide high
biomolecular yields and scalability to thick tissues. Thus, it can greatly benefit simultaneous characterization of super-fine
biomolecular structures and large 3D biological systems.
抽象的
了解大脑等复杂生物系统中生物分子的纳米级组织,不仅可以
提供基本的生物学见解,同时也有助于发现治疗的新靶点和技术
光学显微镜提供了一种使用现成的生物样本成像的便捷方法。
然而,由于染料/抗体的影响,传统光学显微镜的空间分辨率仅限于 300 nm。
另一方面,现有的超分辨率光学技术面临可扩展性的挑战。
厚的组织并且需要极其昂贵的硬件,这限制了它们最近发现的扩展。
显微镜 (ExM),基于将样品(嵌入可膨胀凝胶中)物理膨胀约 4.5 倍,
因此,实现 70 nm 的有效分辨率是可扩展的并且与传统光学硬件兼容。
70 nm 的分辨率不足以观察亚细胞结构,但可以通过以下方法提高分辨率。
迭代 ExM (iExM),它会导致生物分子产率低,因为它需要将生物分子从一种凝胶转移到另一种凝胶,
拟议的工作旨在开发一种扩展技术,其中凝胶裂解或。
该技术不需要生物分子转移,因此生物分子产率高。
和机械力进行膨胀以实现高膨胀系数(20x 至 100x),从而导致 300 / 20 ≈ 15 nm 至
300 / 100 ≈ 3 nm 分辨率,我将其称为非切割机电扩展 (NEME)。
与以前仅利用静电力进行扩展的扩展技术不同。
拟议工作的一部分将涉及 NEME 技术的开发和表征
独立阶段,NEME 将扩展到致密蛋白质复合物以及 RNA 和 DNA 的成像。
技术可以实现超分辨率成像,无需任何专门或昂贵的硬件,并且还可以提供高分辨率
因此,它可以极大地有利于超精细的同时表征。
生物分子结构和大型 3D 生物系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deblina Sarkar其他文献
Deblina Sarkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deblina Sarkar', 18)}}的其他基金
Circulatronics: A New Paradigm for Biomedical Implants
循环电子学:生物医学植入物的新范式
- 批准号:
10472942 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
A Novel Wireless and Subcellular Device for Neuromodulation
用于神经调节的新型无线和亚细胞设备
- 批准号:
10516902 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
A Novel Wireless and Subcellular Device for Neuromodulation
用于神经调节的新型无线和亚细胞设备
- 批准号:
10676270 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Non-cleaved Electro-Mechanical Expansion (NEME) technology for super-resolution imaging of biological samples with conventional optical microscopes
非切割机电扩展 (NEME) 技术,用于使用传统光学显微镜对生物样品进行超分辨率成像
- 批准号:
10424488 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
- 批准号:32371262
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于吡啶盐的可裂解抗体-药物偶联方法研究
- 批准号:22307081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TFAM条件性敲除重塑树突状细胞免疫代谢增强PD-1抗体抗肿瘤作用的机制研究
- 批准号:82303723
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
广谱中和埃博拉病毒的纳米抗体研发以及中和机制研究
- 批准号:82302522
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新细胞因子FAM19A4联合CTLA-4抗体在肿瘤治疗的功能和机制研究
- 批准号:32370967
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
- 批准号:
10727237 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
The Center for Synovial Sarcoma Biology and Therapeutics
滑膜肉瘤生物学和治疗中心
- 批准号:
10797558 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Structural Basis of Nociceptor Channel TRPM3 gating and pharmacology
伤害感受器通道 TRPM3 门控和药理学的结构基础
- 批准号:
10735377 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Impact of novel enhancers on Igh repertoire diversity
新型增强子对 Igh 库多样性的影响
- 批准号:
10716628 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: