Mixed graphical models for the prediction of neurological morbidity in the PICU
用于预测 PICU 神经发病率的混合图形模型
基本信息
- 批准号:10178124
- 负责人:
- 金额:$ 18.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdmission activityAdultAgeAlgorithmsBiochemicalBiological MarkersBiosensorBrainBrain InjuriesBrain-Derived Neurotrophic FactorCaringCell DeathChildChildhoodClassificationClinicalClinical DataComplicationCritical IllnessDataDeliriumDetectionDevelopmentDiagnosisDiagnosticEarly DiagnosisEarly InterventionEarly identificationElectronic Health RecordEncephalopathiesEnrollmentEquipment and supply inventoriesEventEvidence based treatmentFailureGlial Fibrillary Acidic ProteinGraphHeart ArrestHeart RateHemorrhageInduction of neuromuscular blockadeInjuryKineticsLaboratoriesLeadershipLearningLearning SkillMeasuresMentored Patient-Oriented Research Career Development AwardMethodsModelingModernizationMonitorMorbidity - disease rateMyelin Basic ProteinsNervous System TraumaNeurologicOutcomePathway interactionsPatientsPediatric HospitalsPediatric Intensive Care UnitsPediatricsPopulationPopulations at RiskProcessPrognosisQuality of lifeReceiver Operating CharacteristicsResearchResearch PersonnelResuscitationRiskSedation procedureSeizuresSerumSeveritiesSourceStrokeSubgroupSystemTechniquesTimeTrainingTraumatic Brain InjuryX-Ray Computed Tomographybiomarker developmentbiomarker signaturebiomathematicsclinical applicationclinical practicecohortdiscrete datafeature selectionfunctional statuslearning algorithmmagnetic resonance imaging/electroencephalographymortalitynovelpredictive modelingpreventprimary outcomeprognosticroutine screeningsecondary outcomeskillsspecific biomarkerstooltreatment strategy
项目摘要
In the modern pediatric intensive care unit (PICU), as mortality rates continue to decline, focus has shifted towards measures to decrease neurological morbidity. Neurological complications can be difficult to detect in the PICU as children oftentimes receive sedation and/or neuromuscular blockade due to the severity of their illnesses. Early identification and implementation of evidence-based treatment strategies is paramount to the reduction of neurological morbidity. Traditional methods of neuro-monitoring (computed tomography [CT], magnetic resonance imaging [MRI], electroencephalography [EEG]) cannot be practically utilized for routine screening purposes. We believe that biomathematical models integrating biomarkers and clinical data may represent an important tool for the detection of neurological complications in the PICU. This strategy may allow for rapid identification of neurologic complications and earlier intervention to ultimately reduce morbidity and mortality. In this mentored patient-oriented research career development award we will attempt to develop mixed graphical models using a novel algorithm developed by the co-sponsor, MGM-Learn (Mixed Graphical Model Learning), which has the unique capability of processing continuous and discrete variables. Two hundred and twenty-eight diagnostically diverse children admitted to the PICU at Children's Hospital of Pittsburgh of UPMC will be enrolled. Serum biomarkers (myelin basic protein [MBP], S100B, brain derived neurotrophic factor [BDNF], and glial fibrillary acidic protein [GFAP]) that have shown promise in prognostication of outcome after neurological injuries such as traumatic brain injury or cardiac arrest will be used in conjunction with clinical and laboratory variables obtained from the electronic health record, through integrative analysis in mixed graphical models to predict acute development of neurological complications that were not present at the time of admission (e.g. seizure, stroke, hemorrhage, encephalopathy) and morbidity (e.g. Functional Status Scale (FSS), Pediatric Quality of Life Inventory (PedsQL)) at discharge and 6 months following critical illness. This K23 award will provide me with in-depth training in mixed graphical modeling, greatly enhance my skills in the clinical application of neuro-biomarkers and effective leadership and management to transition to a successful independent investigator. It will provide preliminary data for my R01, the implementation of an early warning neuro-biosensor system, through the use of mixed graphical models that continually populates with the most up-to-date biomarker and clinical data variables, into clinical practice to detect neurological complications at a moment to moment basis; and the assessment of its ability to reduce neurologic morbidity through early recognition of neurological complications and timely execution of treatment strategies to prevent irreversible brain damage.
在现代的小儿重症监护病房(PICU)中,随着死亡率继续下降,重点已转向降低神经系统发病率的措施。由于患病的严重程度,儿童通常会受到镇静和/或神经肌肉阻滞,因此在PICU中可能很难发现神经系统并发症。早期鉴定和实施基于证据的治疗策略对于降低神经系统发病率至关重要。传统的神经照明方法(计算机断层扫描[CT],磁共振成像[MRI],脑电图[EEG])实际上不能用于常规筛选目的。我们认为,整合生物标志物和临床数据的生物学模型可能是检测PICU神经系统并发症的重要工具。该策略可以快速鉴定神经系统并发症和更早的干预措施,以最终降低发病率和死亡率。在这个受过指导的患者研究职业发展奖中,我们将尝试使用由共同发起人MGM-Learn(混合图形模型学习)开发的新型算法开发混合图形模型,该算法具有连续和离散变量的独特能力。将招募228名诊断出多样化的儿童,这些儿童将被录取在UPMC匹兹堡儿童医院的PICU。血清生物标志物(髓磷脂碱性蛋白[MBP],S100B,脑衍生的神经营养因子[BDNF]和神经胶质纤维纤维酸性蛋白[GFAP])在通过跨性别或心脏损伤中使用诸如康科疗法的临床降临型变异后,在预后表现出了在预后的预后,这些预后会在康置的临床上使用,并将其用于康科疗法。在混合图形模型中,预测入院时不存在神经系统并发症的急性发展(例如,癫痫发作,中风,出血,脑病,脑病)和发病率(例如功能状态量表(FSS),生命质量库存(PEDSQL)和6个月后的6个月后,在出院和6个月后。这项K23奖将为我提供混合图形建模的深入培训,从而极大地提高了我在神经生物标志物的临床应用方面的技能,以及有效的领导力和管理,以过渡到成功的独立研究者。它将通过使用混合图形模型来为我的R01,即预警神经生物传感器系统的实施提供初步数据,这些模型不断地以最新的生物标志物和临床数据变量持续填充,以临时检测神经系统并发症;以及通过早期识别神经系统并发症以及及时执行治疗策略以防止不可逆的脑损伤来降低神经系统发病率的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alicia K Au其他文献
Alicia K Au的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alicia K Au', 18)}}的其他基金
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10676895 - 财政年份:2021
- 资助金额:
$ 18.98万 - 项目类别:
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10456945 - 财政年份:2021
- 资助金额:
$ 18.98万 - 项目类别:
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10313294 - 财政年份:2021
- 资助金额:
$ 18.98万 - 项目类别:
Mixed graphical models for the prediction of neurological morbidity in the PICU
用于预测 PICU 神经发病率的混合图形模型
- 批准号:
10437665 - 财政年份:2018
- 资助金额:
$ 18.98万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Evaluating EEG as a diagnostic and prognostic biomarker in Malawian children with febrile coma
评估脑电图作为马拉维热昏迷儿童的诊断和预后生物标志物
- 批准号:
10523296 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别:
2/2 IMPRroving Outcomes in Vascular DisEase - Aortic Dissection (IMPROVE-AD)
2/2 血管疾病的改善结果 - 主动脉夹层 (IMPROVE-AD)
- 批准号:
10663555 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别:
Meeting the Challenges of COVID-19 by Expanding the Reach of Palliative Care: Proactive Advance Care Planning with Videos for the Elderly and all Patients with Dementia
通过扩大姑息治疗的范围来应对 COVID-19 的挑战:为老年人和所有痴呆症患者提供视频的主动预先护理计划
- 批准号:
10784057 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别: