Mixed graphical models for the prediction of neurological morbidity in the PICU
用于预测 PICU 神经发病率的混合图形模型
基本信息
- 批准号:10178124
- 负责人:
- 金额:$ 18.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdmission activityAdultAgeAlgorithmsBiochemicalBiological MarkersBiosensorBrainBrain InjuriesBrain-Derived Neurotrophic FactorCaringCell DeathChildChildhoodClassificationClinicalClinical DataComplicationCritical IllnessDataDeliriumDetectionDevelopmentDiagnosisDiagnosticEarly DiagnosisEarly InterventionEarly identificationElectronic Health RecordEncephalopathiesEnrollmentEquipment and supply inventoriesEventEvidence based treatmentFailureGlial Fibrillary Acidic ProteinGraphHeart ArrestHeart RateHemorrhageInduction of neuromuscular blockadeInjuryKineticsLaboratoriesLeadershipLearningLearning SkillMeasuresMentored Patient-Oriented Research Career Development AwardMethodsModelingModernizationMonitorMorbidity - disease rateMyelin Basic ProteinsNervous System TraumaNeurologicOutcomePathway interactionsPatientsPediatric HospitalsPediatric Intensive Care UnitsPediatricsPopulationPopulations at RiskProcessPrognosisQuality of lifeReceiver Operating CharacteristicsResearchResearch PersonnelResuscitationRiskSedation procedureSeizuresSerumSeveritiesSourceStrokeSubgroupSystemTechniquesTimeTrainingTraumatic Brain InjuryX-Ray Computed Tomographybiomarker developmentbiomarker signaturebiomathematicsclinical applicationclinical practicecohortdiscrete datafeature selectionfunctional statuslearning algorithmmagnetic resonance imaging/electroencephalographymortalitynovelpredictive modelingpreventprimary outcomeprognosticroutine screeningsecondary outcomeskillsspecific biomarkerstooltreatment strategy
项目摘要
In the modern pediatric intensive care unit (PICU), as mortality rates continue to decline, focus has shifted towards measures to decrease neurological morbidity. Neurological complications can be difficult to detect in the PICU as children oftentimes receive sedation and/or neuromuscular blockade due to the severity of their illnesses. Early identification and implementation of evidence-based treatment strategies is paramount to the reduction of neurological morbidity. Traditional methods of neuro-monitoring (computed tomography [CT], magnetic resonance imaging [MRI], electroencephalography [EEG]) cannot be practically utilized for routine screening purposes. We believe that biomathematical models integrating biomarkers and clinical data may represent an important tool for the detection of neurological complications in the PICU. This strategy may allow for rapid identification of neurologic complications and earlier intervention to ultimately reduce morbidity and mortality. In this mentored patient-oriented research career development award we will attempt to develop mixed graphical models using a novel algorithm developed by the co-sponsor, MGM-Learn (Mixed Graphical Model Learning), which has the unique capability of processing continuous and discrete variables. Two hundred and twenty-eight diagnostically diverse children admitted to the PICU at Children's Hospital of Pittsburgh of UPMC will be enrolled. Serum biomarkers (myelin basic protein [MBP], S100B, brain derived neurotrophic factor [BDNF], and glial fibrillary acidic protein [GFAP]) that have shown promise in prognostication of outcome after neurological injuries such as traumatic brain injury or cardiac arrest will be used in conjunction with clinical and laboratory variables obtained from the electronic health record, through integrative analysis in mixed graphical models to predict acute development of neurological complications that were not present at the time of admission (e.g. seizure, stroke, hemorrhage, encephalopathy) and morbidity (e.g. Functional Status Scale (FSS), Pediatric Quality of Life Inventory (PedsQL)) at discharge and 6 months following critical illness. This K23 award will provide me with in-depth training in mixed graphical modeling, greatly enhance my skills in the clinical application of neuro-biomarkers and effective leadership and management to transition to a successful independent investigator. It will provide preliminary data for my R01, the implementation of an early warning neuro-biosensor system, through the use of mixed graphical models that continually populates with the most up-to-date biomarker and clinical data variables, into clinical practice to detect neurological complications at a moment to moment basis; and the assessment of its ability to reduce neurologic morbidity through early recognition of neurological complications and timely execution of treatment strategies to prevent irreversible brain damage.
在现代儿科重症监护室 (PICU),随着死亡率持续下降,重点已转向降低神经系统发病率的措施。在儿科重症监护病房 (PICU) 中,神经系统并发症很难被发现,因为儿童由于病情严重,经常接受镇静和/或神经肌肉阻滞。早期识别和实施循证治疗策略对于降低神经系统发病率至关重要。传统的神经监测方法(计算机断层扫描 [CT]、磁共振成像 [MRI]、脑电图 [EEG])实际上无法用于常规筛查目的。我们相信,整合生物标志物和临床数据的生物数学模型可能是检测 PICU 神经系统并发症的重要工具。该策略可以快速识别神经系统并发症并进行早期干预,以最终降低发病率和死亡率。在这个以患者为导向的研究职业发展奖中,我们将尝试使用联合赞助商 MGM-Learn(混合图形模型学习)开发的新颖算法来开发混合图形模型,该算法具有处理连续和离散变量的独特能力。将登记入住 UPMC 匹兹堡儿童医院 PICU 的 228 名诊断多样化的儿童。血清生物标志物(髓鞘碱性蛋白 [MBP]、S100B、脑源性神经营养因子 [BDNF] 和神经胶质纤维酸性蛋白 [GFAP])在预测神经损伤(如创伤性脑损伤或心脏骤停)后的结果方面表现出希望,将被与从电子健康记录中获得的临床和实验室变量结合使用,通过混合图形模型的综合分析来预测入院时不存在的神经系统并发症的急性发展出院时和危重病后 6 个月的发病情况(例如功能状态量表 (FSS)、儿科生活质量量表 (PedsQL))。这个K23奖项将为我提供混合图形建模方面的深入培训,极大地提高我在神经生物标志物临床应用方面的技能以及有效的领导和管理能力,以过渡到一名成功的独立研究者。它将为我的 R01(早期预警神经生物传感器系统的实施)提供初步数据,通过使用混合图形模型不断填充最新的生物标志物和临床数据变量,进入临床实践以检测神经系统疾病随时出现并发症;并评估其通过早期识别神经系统并发症和及时执行治疗策略以防止不可逆的脑损伤来降低神经系统发病率的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alicia K Au其他文献
Alicia K Au的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alicia K Au', 18)}}的其他基金
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10676895 - 财政年份:2021
- 资助金额:
$ 18.98万 - 项目类别:
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10456945 - 财政年份:2021
- 资助金额:
$ 18.98万 - 项目类别:
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10313294 - 财政年份:2021
- 资助金额:
$ 18.98万 - 项目类别:
Mixed graphical models for the prediction of neurological morbidity in the PICU
用于预测 PICU 神经发病率的混合图形模型
- 批准号:
10437665 - 财政年份:2018
- 资助金额:
$ 18.98万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Evaluating EEG as a diagnostic and prognostic biomarker in Malawian children with febrile coma
评估脑电图作为马拉维热昏迷儿童的诊断和预后生物标志物
- 批准号:
10523296 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别:
2/2 IMPRroving Outcomes in Vascular DisEase - Aortic Dissection (IMPROVE-AD)
2/2 血管疾病的改善结果 - 主动脉夹层 (IMPROVE-AD)
- 批准号:
10663555 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别:
Meeting the Challenges of COVID-19 by Expanding the Reach of Palliative Care: Proactive Advance Care Planning with Videos for the Elderly and all Patients with Dementia
通过扩大姑息治疗的范围来应对 COVID-19 的挑战:为老年人和所有痴呆症患者提供视频的主动预先护理计划
- 批准号:
10784057 - 财政年份:2023
- 资助金额:
$ 18.98万 - 项目类别: