Collaborative robot (cobot) controlled system for transcranial magnetic stimulation
协作机器人(cobot)控制的经颅磁刺激系统
基本信息
- 批准号:10177246
- 负责人:
- 金额:$ 55.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2023-06-14
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAreaBrainCommunitiesComplexConsumptionDataDetectionDevelopmentDevicesDiagnosticDrug resistanceFatigueGoalsHeadHumanIndividualInvestigationLocationMagnetic Resonance ImagingMagnetoencephalographyManualsMechanicsMental DepressionMethodsMotionMovementNatureNeuronavigationPainlessPositioning AttributePositron-Emission TomographyResearchResourcesRobotRoboticsScalp structureSecondary toSystemTechnologyTherapeuticTimeTranscranial magnetic stimulationcostcraniumelectric fieldexperimental studyfunctional magnetic resonance imaging/electroencephalographyimage guidedinstrumentinstrumentationmagnetic fieldneuroimagingneuroregulationnovel therapeuticsportabilityresponsetranslational study
项目摘要
Transcranial Magnetic Stimulation (TMS) is a method for non-invasive neuromodulation that uses strong
currents passed to a coil placed next to the scalp to induce electric fields and currents in the brain. The fact
that the electric field is induced by a time-varying magnetic field enables the stimulation to penetrate the skull
efficiently, safely, and painlessly. Therefore, TMS has become highly popular for both basic scientific research
and for diagnostic and therapeutic applications such as treatment of drug-resistant depression. It is well known
that the effects of the TMS-induced brain activations propagate from the primary target area to the secondary
areas that are anatomically connected to it, generating a network-level response. This observation has
important consequences for understanding the effects of the stimulation. First, the primary target location must
be defined with respect to individual anatomy and the stimulation location maintained consistently. Second,
neuroimaging methods are needed to record how the brain networks respond to the stimulation.
TMS neuronavigation systems have rapidly gained popularity in the scientific community due to the
development of the accurate frameless stereotactic systems utilizing subject-specific Magnetic Resonance
Imaging (MRI) data to define stimulation targets. While it is possible to obtain accurate manual coil positioning
under MRI guided neuronavigation, for more complex experiments this may cause significant operator fatigue
due to holding the bulky TMS coil in a fixed position for extended periods of time resulting in unwanted
variability in the spatial targeting of the stimulation. Mechanical coil holders can be employed to mitigate the
operator fatigue, but any movement of the subject’s head will require a time-consuming repositioning of the
holder device. Robotic positioning of the TMS coil is arguably the most accurate and efficient method for
resolving these issues, but the instrumentation is rather costly, and the system has limited mobility/portability
due to its large size. Recently, collaborative robot (cobot) technology was introduced to lower the cost and
increase the mobility of automatic TMS coil positioning. The system can be piloted also manually and after
initial guidance of the TMS coil to the desired target by a human operator, the TMS cobot will maintain
consistent positioning of the coil with a high degree of accuracy and automatic detection/correction for head
motion. In this proposal, the goal is to acquire an instrument system for neuronavigated TMS controlled with a
collaborative robot. Due to its transportable nature, the system can be used in conjunction with neuroimaging
methods such as functional MRI (fMRI), electroencephalography (EEG), magnetoencephalography (MEG),
and Positron Emission Tomography (PET). The capability of and combining TMS with neuroimaging to observe
and quantify the neuromodulation effects enable parallel translational studies on potential new therapeutic
TMS applications and more detailed investigations of the fundamental activation mechanisms. The instrument
system will be a unique resource for a large group of users in the local area.
经颅磁刺激 (TMS) 是一种利用强磁力进行非侵入性神经调节的方法
电流传递到放置在头皮附近的线圈,在大脑中感应出电场和电流。
电场是由时变磁场感应产生的,使刺激能够穿透颅骨
因此,TMS 已在基础科学研究中变得非常流行。
以及用于诊断和治疗应用,例如治疗耐药性抑郁症,这是众所周知的。
TMS 诱导的大脑激活的效果从主要目标区域传播到次要目标区域
在解剖学上与之相连的区域,产生了网络级响应。
了解刺激效果的重要后果首先,主要目标位置必须。
其次,根据个体解剖结构来定义,并且刺激位置保持一致。
需要神经影像方法来记录大脑网络如何响应刺激。
TMS 神经导航系统由于以下原因在科学界迅速普及:
利用特定主题磁共振开发精确的无框架立体定向系统
成像 (MRI) 数据可定义刺激目标,同时可以获得准确的手动线圈定位。
在 MRI 引导的神经导航下,对于更复杂的实验,这可能会导致操作员明显疲劳
由于将笨重的 TMS 线圈长时间保持在固定位置,导致不必要的
刺激的空间目标的可变性可以用来减轻刺激的空间目标。
操作员疲劳,但受试者头部的任何移动都需要耗时的重新定位
TMS 线圈的机器人定位可以说是最准确、最有效的方法。
解决了这些问题,但仪器设备相当昂贵,而且系统的移动性/便携性有限
由于其体积大,最近引入了协作机器人(cobot)技术以降低成本和
增加自动 TMS 线圈定位的机动性 该系统也可以手动和事后驾驶。
由人类操作员对 TMS 线圈进行初始引导至所需目标,TMS 协作机器人将保持
线圈定位一致,精度高,并自动检测/校正磁头
在该提案中,目标是获得一种用于神经导航 TMS 的仪器系统,并由
由于其可移动的特性,该系统可以与神经成像结合使用。
功能性磁共振成像(fMRI)、脑电图(EEG)、脑磁图(MEG)等方法,
正电子发射断层扫描 (PET) 将 TMS 与神经影像相结合进行观察。
并量化神经调节效应,从而能够对潜在的新疗法进行并行转化研究
TMS 应用以及对基本激活机制的更详细研究。
系统将成为当地大量用户的独特资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aapo Nummenmaa其他文献
Aapo Nummenmaa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aapo Nummenmaa', 18)}}的其他基金
CRCNS: Multifocal causal mapping of brain networks supporting human cognition
CRCNS:支持人类认知的大脑网络的多焦点因果图谱
- 批准号:
10612128 - 财政年份:2022
- 资助金额:
$ 55.83万 - 项目类别:
Near real-time system for high-resolution computationalTMS navigation
用于高分辨率计算 TMS 导航的近实时系统
- 批准号:
10345482 - 财政年份:2022
- 资助金额:
$ 55.83万 - 项目类别:
Near real-time system for high-resolution computationalTMS navigation
用于高分辨率计算 TMS 导航的近实时系统
- 批准号:
10558627 - 财政年份:2022
- 资助金额:
$ 55.83万 - 项目类别:
CRCNS: Multifocal causal mapping of brain networks supporting human cognition
CRCNS:支持人类认知的大脑网络的多焦点因果图谱
- 批准号:
10654871 - 财政年份:2022
- 资助金额:
$ 55.83万 - 项目类别:
Modeling TMS-induced Cortical Network Activity
模拟 TMS 诱导的皮质网络活动
- 批准号:
9348648 - 财政年份:2015
- 资助金额:
$ 55.83万 - 项目类别:
Modeling TMS-induced Cortical Network Activity
模拟 TMS 诱导的皮质网络活动
- 批准号:
9137686 - 财政年份:2015
- 资助金额:
$ 55.83万 - 项目类别:
Modeling TMS-induced Cortical Network Activity
模拟 TMS 诱导的皮质网络活动
- 批准号:
8581251 - 财政年份:2013
- 资助金额:
$ 55.83万 - 项目类别:
相似国自然基金
基于迷走神经传导通路及其大脑皮层投射区域的调控探讨耳穴刺激治疗原发性失眠障碍疗效差异的脑功能机制及疗效预测研究
- 批准号:82304984
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向有限监督信息的脑影像感兴趣区域分割及应用
- 批准号:62376123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向丘脑底核后部区域治疗帕金森病震颤的脑连接机制研究
- 批准号:82301664
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高龄老人认知老化的神经机制:基于脑区域功能活性与大尺度网络的实证与干预研究
- 批准号:32300859
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A8/A9+小胶质细胞调控脑区域巨噬细胞M2极化及其抑制IL23/γδT17 /Th17轴在阻遏神经梅毒脑损伤中的机制研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Deciphering the role of VTA dopaminergic signaling in memory consolidation during sleep
解读 VTA 多巴胺能信号在睡眠期间记忆巩固中的作用
- 批准号:
10677962 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
- 批准号:
10664783 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
- 批准号:
10665493 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别: