SCH: INT: Collaborative Research: Development and analysis of new mathematical and statistical models for chronic pain
SCH:INT:合作研究:慢性疼痛新数学和统计模型的开发和分析
基本信息
- 批准号:10180356
- 负责人:
- 金额:$ 36.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-13 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgreementAnalgesicsBiologicalBiologyCD4 Lymphocyte CountCar PhoneCharacteristicsChemical EngineeringChronic DiseaseClassificationCustomDataData ScienceDevelopmentDifferential EquationDocumentationEducational BackgroundEventFinancial costFutureGoalsGrowthHIVHospitalizationHybridsInterventionKnowledgeLiteratureMachine LearningMathematicsMedicalMedical DeviceMethodsMicrobiologyMiningModelingNamesOptimum PopulationsPainPatientsPharmaceutical PreparationsPlayPrincipal InvestigatorProcessReportingResearchRoleScienceSickle Cell AnemiaSourceStatistical Data InterpretationStatistical ModelsStreamSystemTimeTreatment EffectivenessTreatment ProtocolsViral Load resultVisitacute carebasebiological systemsbiomedical data sciencechronic paincomparativedata streamsdynamic systemfollow-uphealth managementhuman diseaseindividual patientinsightintervention costmathematical modelmathematical sciencesmedical complicationmobile applicationmobile computingneural networkpatient populationprecision medicinepredictive modelingprogramsreadmission ratesresearch and developmentstatisticstheoriestool
项目摘要
Program Director/Principal Investigator (Last, First, Middle): Abrams, Daniel, M
Project Description
1. Intellectual merit
(see Sec. 2, pages 13-14, for "Broader impacts")
1.1 Introduction and background
1.1.1 General introduction
During recent decades there has been an extraordinary growth in the availability of data relating
to a wide range of microbiological systems. That data has enabled new quantitative approaches
to biology, including the development of new mathematical and statistical models that given fun-
damental insight into the workings of biological systems.
Another source is now growing explosively: biomedical data. This data has significant potential
for use in treatment of human disease, but thus far comparatively fewer mathematical models for
medical phenomena have been developed. The hope is that quantitative models will allow for
"personalized" or "precision" medicine, where treatment protocols are customized based on an
understanding of how individual patient characteristics impact the effectiveness of the treatment.
Deep mathematical understanding of biomedical systems also promises to allow for optimization
of medical interventions: the physical and/or financial costs of intervention could be minimized for
a given desired level of benefit.
The broad goal of the proposed research is to develop new integrative mathematical models for
the dynamics of subjective pain in patients suffering from chronic pain. These models will combine
existing qualitative knowledge with insight gained from newly available patient data, with the goal
of incorporating data streams corning on line in the near future. We plan to develop multiple models
in parallel using a variety of approaches and then to select the best rnodel(s) based on agreement
with objective data.
1.1.2 Background on biological application: Sickle cell disease
Sickle cell disease (SCD) is a chronic illness associated with frequent medical complications and
hospitalizations. Approximately 90% of acute care visits are for pain events, and 30-day reuti-
lization rates are alarmingly high [27]. While factors influenci.ng these high re-utilization rates are
poorly understood, close follow-up and continued use of pain medication has been shown to de-
crease re-hospitalization rates. Mobile technology has become an integral part of health care
management and Pl Shah's recently developed mobile application (SMART app - see Figure 1)
for SCD assists with documentation of pain and interventions.
1.1.3 Background on hybrid approach
Perhaps because of the often distinct educational backgrounds of practitioners or distinct typical
applications, statistical and mechanistic approaches are not frequently combined in addressing a
single problem. The majority of attempts in the scientific literature have appeared in the context
of neural networks [37, 38, 29] and chemical engineering [38, 33, 11], where they largely play
a computational rather than analytical role. Some attempts have also been made with medical
applications: Rosenberg et al. [30] and Adams et al. [4] developed a model by combining a dy-
namical systems approach with a statistical model to predict a patient's CD4 cell counts and HIV
viral load over time in an HIV study. Timms et al. [39] proposed a dynamical systems approach
1
0MB No. 0925-0001/0002 (Rev. 01/18 Approved Through 03/31/2020) Page_ Continuation Format Page
项目总监/首席研究员(最后、第一、中间):Abrams、Daniel、M
项目描述
1. 智力优势
(参见第 2 节第 13-14 页“更广泛的影响”)
1.1 简介和背景
1.1.1 概述
近几十年来,相关数据的可用性出现了惊人的增长。
广泛的微生物系统。这些数据启用了新的定量方法
生物学,包括开发新的数学和统计模型,这些模型赋予了乐趣
对生物系统运作的基本洞察。
另一个来源现在正在爆炸性增长:生物医学数据。该数据具有巨大潜力
用于治疗人类疾病,但迄今为止相对较少的数学模型
医学现象已经发展起来。希望定量模型能够允许
“个性化”或“精准”医学,即根据患者的情况定制治疗方案
了解患者的个体特征如何影响治疗的有效性。
对生物医学系统的深入数学理解也有望实现优化
医疗干预措施:干预措施的物理和/或财务成本可以最小化
给定的期望利益水平。
拟议研究的总体目标是开发新的综合数学模型
患有慢性疼痛的患者主观疼痛的动态。这些模型将结合
现有的定性知识以及从新获得的患者数据中获得的见解,其目标
合并在不久的将来上线的数据流。我们计划开发多种型号
并行使用多种方法,然后根据协议选择最佳 rnodel(s)
用客观数据。
1.1.2 生物学应用背景:镰状细胞病
镰状细胞病 (SCD) 是一种与频繁的医疗并发症相关的慢性疾病,
住院治疗。大约 90% 的急性护理就诊是因为疼痛事件,并且 30 天的回顾
化率高得惊人[27]。虽然影响这些高再利用率的因素是
知之甚少,密切随访和继续使用止痛药已被证明可以消除
提高再住院率。移动技术已成为医疗保健不可或缺的一部分
管理和 Pl Shah 最近开发的移动应用程序(SMART 应用程序 - 见图 1)
SCD 有助于记录疼痛和干预措施。
1.1.3 混合方法的背景
也许是因为从业者通常具有不同的教育背景或不同的典型特征
应用、统计和机械方法在解决问题时并不经常结合起来
单一问题。科学文献中的大多数尝试都出现在这样的背景下
神经网络 [37,38,29] 和化学工程 [38,33,11],它们主要发挥作用
计算而非分析的角色。医疗方面也做了一些尝试
应用:罗森伯格等人。 [30] 和亚当斯等人。 [4]通过结合dy-开发了一个模型
使用统计模型的自然系统方法来预测患者的 CD4 细胞计数和 HIV
HIV 研究中随时间变化的病毒载量。蒂姆斯等人。 [39]提出了一种动力系统方法
1
0MB No. 0925-0001/0002(修订版 01/18 已批准至 03/31/2020) Page_ 继续格式页
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel M Abrams其他文献
Daniel M Abrams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel M Abrams', 18)}}的其他基金
SCH: INT: Collaborative Research: Development and analysis of new mathematical and statistical models for chronic pain
SCH:INT:合作研究:慢性疼痛新数学和统计模型的开发和分析
- 批准号:
10231168 - 财政年份:2018
- 资助金额:
$ 36.85万 - 项目类别:
相似国自然基金
基于无源反向散射的跨协议融合与通感增强技术研究
- 批准号:62302383
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于事件逻辑理论的安全协议实施安全性形式化分析与验证
- 批准号:62362033
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
融合无线自组网的区块链协议研究
- 批准号:62302266
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理设备与通信信道特征融合的协同内生安全模型及协议
- 批准号:62361010
- 批准年份:2023
- 资助金额:35 万元
- 项目类别:地区科学基金项目
卫星互联网端到端安全传输模型与安全路由协议研究
- 批准号:62302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
PUFA metabolism for prevention and treatment of TMD pain: an interdisciplinary, translational approach.
PUFA 代谢预防和治疗 TMD 疼痛:一种跨学科的转化方法。
- 批准号:
10820840 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
- 批准号:
10657958 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Providers and Older Pain Patients with Prescription Opioid Dependence: A Qualitative Study to Understand Barriers to Opioid Taper, Cessation, and Transition to Buprenorphine.
具有处方阿片类药物依赖性的提供者和老年疼痛患者:一项定性研究,旨在了解阿片类药物逐渐减少、戒断和过渡到丁丙诺啡的障碍。
- 批准号:
10671358 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Improving pain management and opioid safety through a systemwide, data driven evaluation of the CDC opioid prescribing guideline best practices and the use of Clinical Decision Support
通过对 CDC 阿片类药物处方指南最佳实践进行全系统、数据驱动的评估并使用临床决策支持,改善疼痛管理和阿片类药物安全
- 批准号:
10588405 - 财政年份:2022
- 资助金额:
$ 36.85万 - 项目类别:
Development and Commercialization of a pupillometer to predict postoperative opioid-induced respiratory depression in children
用于预测儿童术后阿片类药物引起的呼吸抑制的瞳孔计的开发和商业化
- 批准号:
10390249 - 财政年份:2022
- 资助金额:
$ 36.85万 - 项目类别: