SCH: INT: Collaborative Research: Development and analysis of new mathematical and statistical models for chronic pain

SCH:INT:合作研究:慢性疼痛新数学和统计模型的开发和分析

基本信息

  • 批准号:
    10180356
  • 负责人:
  • 金额:
    $ 36.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-13 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Program Director/Principal Investigator (Last, First, Middle): Abrams, Daniel, M Project Description 1. Intellectual merit (see Sec. 2, pages 13-14, for "Broader impacts") 1.1 Introduction and background 1.1.1 General introduction During recent decades there has been an extraordinary growth in the availability of data relating to a wide range of microbiological systems. That data has enabled new quantitative approaches to biology, including the development of new mathematical and statistical models that given fun- damental insight into the workings of biological systems. Another source is now growing explosively: biomedical data. This data has significant potential for use in treatment of human disease, but thus far comparatively fewer mathematical models for medical phenomena have been developed. The hope is that quantitative models will allow for "personalized" or "precision" medicine, where treatment protocols are customized based on an understanding of how individual patient characteristics impact the effectiveness of the treatment. Deep mathematical understanding of biomedical systems also promises to allow for optimization of medical interventions: the physical and/or financial costs of intervention could be minimized for a given desired level of benefit. The broad goal of the proposed research is to develop new integrative mathematical models for the dynamics of subjective pain in patients suffering from chronic pain. These models will combine existing qualitative knowledge with insight gained from newly available patient data, with the goal of incorporating data streams corning on line in the near future. We plan to develop multiple models in parallel using a variety of approaches and then to select the best rnodel(s) based on agreement with objective data. 1.1.2 Background on biological application: Sickle cell disease Sickle cell disease (SCD) is a chronic illness associated with frequent medical complications and hospitalizations. Approximately 90% of acute care visits are for pain events, and 30-day reuti- lization rates are alarmingly high [27]. While factors influenci.ng these high re-utilization rates are poorly understood, close follow-up and continued use of pain medication has been shown to de- crease re-hospitalization rates. Mobile technology has become an integral part of health care management and Pl Shah's recently developed mobile application (SMART app - see Figure 1) for SCD assists with documentation of pain and interventions. 1.1.3 Background on hybrid approach Perhaps because of the often distinct educational backgrounds of practitioners or distinct typical applications, statistical and mechanistic approaches are not frequently combined in addressing a single problem. The majority of attempts in the scientific literature have appeared in the context of neural networks [37, 38, 29] and chemical engineering [38, 33, 11], where they largely play a computational rather than analytical role. Some attempts have also been made with medical applications: Rosenberg et al. [30] and Adams et al. [4] developed a model by combining a dy- namical systems approach with a statistical model to predict a patient's CD4 cell counts and HIV viral load over time in an HIV study. Timms et al. [39] proposed a dynamical systems approach 1 0MB No. 0925-0001/0002 (Rev. 01/18 Approved Through 03/31/2020) Page_ Continuation Format Page
计划总监/首席调查员(最后,第一,中间):艾布拉姆斯,丹尼尔,M 项目描述 1。智力优点 (有关“更广泛的影响”,请参见第2节,第13-14页) 1.1简介和背景 1.1.1一般简介 在近几十年中,与数据有关 到广泛的微生物系统。该数据已实现了新的定量方法 生物学,包括开发新的数学和统计模型,这些模型具有有趣的 对生物系统运作的大型洞察力。 现在的另一个来源正在爆炸性地增长:生物医学数据。这些数据具有巨大的潜力 用于治疗人类疾病,但迄今为止的数学模型相对较少 已经开发了医疗现象。希望定量模型将允许 “个性化”或“精度”药物,根据一个基于治疗方案 了解个体患者特征如何影响治疗的有效性。 对生物医学系统的深刻数学理解也有望进行优化 医疗干预措施:可以将干预的物理和/或经济成本最小化 给定所需的利益水平。 拟议的研究的广泛目标是开发新的综合数学模型 患有慢性疼痛的患者主观疼痛的动态。这些型号将结合在一起 现有的定性知识,从新近获得的患者数据中获得的洞察力,目标 在不久的将来将数据流纳入康宁。我们计划开发多种模型 并行使用多种方法,然后根据一致选择最佳的rnodel 使用客观数据。 1.1.2生物应用背景:镰状细胞疾病 镰状细胞病(SCD)是一种慢性疾病,与频繁的医疗并发症和 住院。大约90%的急性护理就诊是用于疼痛事件,而30天的Reuti- 液化率令人震惊[27]。虽然因素影响这些高的重新利用率是 知识渊博的是,近访和继续使用止痛药已证明 折痕重新院长率。移动技术已成为医疗保健不可或缺的一部分 管理和PL Shah最近开发的移动应用程序(智能应用 - 请参见图1) SCD有助于记录疼痛和干预措施。 1.1.3混合方法背景 也许是因为从业人员的教育背景通常很独特或典型的典型 应用程序,统计和机械方法在解决一个方面并不经常合并 单个问题。科学文献中的大多数尝试都出现在上下文中 神经网络[37,38,29]和化学工程[38,33,11] 计算角色而不是分析角色。医疗也进行了一些尝试 应用:Rosenberg等。 [30]和Adams等。 [4]通过结合dy-开发了一个模型 具有统计模型的名义系统方法,以预测患者的CD4细胞计数和HIV 在HIV研究中,病毒载荷随着时间的流逝。 Timms等。 [39]提出了动态系统方法 1 0MB编号0925-0001/0002(修订版01/18通过03/31/2020批准)Page_连续格式页面

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel M Abrams其他文献

Daniel M Abrams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel M Abrams', 18)}}的其他基金

SCH: INT: Collaborative Research: Development and analysis of new mathematical and statistical models for chronic pain
SCH:INT:合作研究:慢性疼痛新数学和统计模型的开发和分析
  • 批准号:
    10231168
  • 财政年份:
    2018
  • 资助金额:
    $ 36.85万
  • 项目类别:

相似国自然基金

卫星互联网端到端安全传输模型与安全路由协议研究
  • 批准号:
    62302389
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中继通信协议下2-D网络化系统的递推状态估计研究
  • 批准号:
    62373103
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
新型实用化量子密码协议的高安全等级理论分析
  • 批准号:
    12374473
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
云边端架构下联邦学习下行通信压缩算法与协议研究
  • 批准号:
    62372487
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
面向实际应用的测量设备无关类量子密钥分发协议研究
  • 批准号:
    62371244
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目

相似海外基金

PUFA metabolism for prevention and treatment of TMD pain: an interdisciplinary, translational approach.
PUFA 代谢预防和治疗 TMD 疼痛:一种跨学科的转化方法。
  • 批准号:
    10820840
  • 财政年份:
    2023
  • 资助金额:
    $ 36.85万
  • 项目类别:
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
  • 批准号:
    10657958
  • 财政年份:
    2023
  • 资助金额:
    $ 36.85万
  • 项目类别:
Providers and Older Pain Patients with Prescription Opioid Dependence: A Qualitative Study to Understand Barriers to Opioid Taper, Cessation, and Transition to Buprenorphine.
具有处方阿片类药物依赖性的提供者和老年疼痛患者:一项定性研究,旨在了解阿片类药物逐渐减少、戒断和过渡到丁丙诺啡的障碍。
  • 批准号:
    10671358
  • 财政年份:
    2023
  • 资助金额:
    $ 36.85万
  • 项目类别:
Improving pain management and opioid safety through a systemwide, data driven evaluation of the CDC opioid prescribing guideline best practices and the use of Clinical Decision Support
通过对 CDC 阿片类药物处方指南最佳实践进行全系统、数据驱动的评估并使用临床决策支持,改善疼痛管理和阿片类药物安全
  • 批准号:
    10588405
  • 财政年份:
    2022
  • 资助金额:
    $ 36.85万
  • 项目类别:
Development and Commercialization of a pupillometer to predict postoperative opioid-induced respiratory depression in children
用于预测儿童术后阿片类药物引起的呼吸抑制的瞳孔计的开发和商业化
  • 批准号:
    10390249
  • 财政年份:
    2022
  • 资助金额:
    $ 36.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了