Neurobiology and dynamics of Active Sensing
主动感知的神经生物学和动力学
基本信息
- 批准号:10175032
- 负责人:
- 金额:$ 177.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAreaAttentionAttention Deficit DisorderAuditoryBehavioralBrainCellsCodeCognitiveCommunicationComputer ModelsDataElectric StimulationElectroencephalographyEmotionalEnvironmentEpilepsyEvolutionEyeEye MovementsFrequenciesFunctional Magnetic Resonance ImagingFunctional disorderGoalsHumanImageIndividualLinkMeasuresModelingMonkeysMotorNeurobiologyNeuronsNeurosciencesOperative Surgical ProceduresParietalPathway AnalysisPeriodicityPhysiological ProcessesPopulation ProcessPropertyResearchResearch PersonnelResourcesRoleRouteSample SizeSamplingScanningSchizophreniaSensorySourceStatistical ModelsSystemThalamic structureUpdateWorkautism spectrum disorderbiophysical propertiescell assemblycell typecognitive processcomputational network modelingcovert attentiondata formatdensityexpectationexperienceexperimental studyfallsgazeindexinginformation gatheringinsightinstrumentneuropsychiatric disorderneuropsychiatrynonhuman primatenoveloperationoutreachprogramsrelating to nervous systemsensory inputtheories
项目摘要
ABSTRACT: Two key principles define the core conceptual framework of our Conte Center. First, most
sensory input is actively acquired by a motor and/or attentional sampling routine; e.g., rather than staring
blankly and hoping that something will “fall” into our gaze, we Actively Scan the visible environment with eye
movements. Even when fixating, we can actively (albeit covertly) scan the environment by shifting attention.
Corresponding “scanning” of the auditory environment uses the more covert attentional sampling strategy, but
is no less active. As a result, Active Sensing (i.e., strategic, goal-driven sampling of inputs) is “predictive” in
that, it is guided by the subject's expectations (theories, models), accumulated through species' evolution, and
refined by individuals' experience. Its central tenet is that sensing and perceiving can be fully understood only
in the context of subjects' ongoing, goal-directed information-gathering activities. Second, neuronal oscillatory
dynamics are critical mechanistic components of normal brain operation. Neuronal oscillations reflect
rhythmic fluctuations of neuron ensembles between high and low excitability states. Mounting evidence
indicates that such rhythmic activity is essential to normal brain operations, and that its disruption contributes
to neuropsychiatric disorders. The idea that Active Sensing incorporates neuronal rhythms as fundamental
instruments of operation represents an ongoing paradigm shift in systems neuroscience. Our Center is unified
by support Cores and a set of mechanistic (linking) hypotheses concerning the “instrumental” functions of
neuronal rhythms at local and network scales. The Center integrates electrocorticographic (ECoG) studies in
humans with intracortical recordings in monkeys and computational modeling. Our Specific Aims are: AIM 1 –
Exploit ECoG's strengths of distributed sampling and direct human brain recording to define dynamical circuits
of top-down control and coordination across cortical areas in Active Sensing. To gain a sample size
appropriate for our purposes, we will pool subjects across 5 surgical epilepsy centers using a common set of
Active Sensing tasks, and a common data format. AIM 2 – Use recordings in nonhuman primates to elucidate
and extend ECoG findings in humans. Laminar field potential (FP), current source density (CSD) and multiunit
activity (MUA) profiles, along with single unit recordings will be obtained from monkeys performing tasks
identical to those studied in humans. AIM 3 – Develop iterative interactions between computational and
empirical studies of circuit dynamics at local (cell assembly) and global (brain network) levels. Tracking specific
neuronal dynamics from the global-network level in humans down to the cellular and cell ensemble levels in
monkeys will yield novel and unique insights into mechanisms of active brain operation. Statistical and
Computational modeling will allow rapid exploration of possibilities suggested by ECoG and related
multielectrode studies in monkeys, and will help in building accurately representing and integrating our findings
across local and global scales.
摘要:两个关键原则定义了我们孔蒂中心的核心概念框架。
感觉输入是通过运动和/或注意力采样程序主动获取的,例如,而不是凝视;
我们茫然地希望有什么东西“落入”我们的视线,我们主动地用眼睛扫描可见的环境
即使在注视时,我们也可以通过转移注意力来主动(尽管是秘密地)观察环境。
相应的听觉环境“扫描”使用了更隐蔽的注意力采样策略,但是
因此,主动感知(即战略性的、目标驱动的输入采样)在以下方面具有“预测性”。
它以主体的期望(理论、模型)为指导,通过物种的进化积累,并且
它的核心原则是只有感知和感知才能被充分理解。
在受试者正在进行的、以目标为导向的信息收集活动的背景下,第二,神经振荡。
动力学是正常大脑运作的关键机制组成部分。
越来越多的证据表明神经系统在高兴奋性状态和低兴奋性状态之间存在节律性波动。
表明这种有节奏的活动对于正常的大脑运作至关重要,并且它的破坏有助于
主动感知将神经节律作为基础的想法。
操作工具代表了系统神经科学正在进行的范式转变,我们的中心是统一的。
通过支持核心和一组有关“工具”功能的机械(链接)假设
该中心整合了局部和网络尺度的神经元节律研究。
我们的具体目标是:AIM 1 –
利用 ECoG 的分布式采样和直接人脑记录的优势来定义动态电路
主动感知中皮层区域自上而下的控制和协调以获得样本量。
适合我们的目的,我们将使用一组通用的方法汇集 5 个癫痫外科中心的受试者
主动传感任务和通用数据格式 AIM 2 – 使用非人类灵长类动物的记录来阐明。
并扩展人类层流场电位 (FP)、电流源密度 (CSD) 和多单元的 ECoG 研究结果。
活动(MUA)概况以及单个单元记录将从执行任务的猴子中获得
与人类研究的相同。 AIM 3 – 开发计算和计算之间的迭代交互。
局部(细胞组装)和全局(大脑网络)水平的电路动力学实证研究跟踪特定。
从人类的全局网络水平到细胞和细胞群体水平的神经动力学
猴子将对活跃的大脑运作机制产生新颖而独特的见解。
计算模型将允许快速探索 ECoG 和相关的建议的可能性
在猴子身上进行多电极研究,将有助于准确地表达和整合我们的发现
跨越本地和全球范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHARLES E SCHROEDER其他文献
CHARLES E SCHROEDER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHARLES E SCHROEDER', 18)}}的其他基金
Multiscale physiology and causal mechanisms of slow network fluctuations
慢网络波动的多尺度生理学和因果机制
- 批准号:
10639546 - 财政年份:2017
- 资助金额:
$ 177.35万 - 项目类别:
Dynamic Neural Mechanisms of Audiovisual Speech Perception
视听言语感知的动态神经机制
- 批准号:
9356348 - 财政年份:2016
- 资助金额:
$ 177.35万 - 项目类别:
Effects of brain stimulation on neuronal dynamics and behavior
脑刺激对神经元动力学和行为的影响
- 批准号:
9102628 - 财政年份:2016
- 资助金额:
$ 177.35万 - 项目类别:
Effects of brain stimulation on neuronal dynamics and behavior
脑刺激对神经元动力学和行为的影响
- 批准号:
9262276 - 财政年份:2016
- 资助金额:
$ 177.35万 - 项目类别:
2014 Neurobiology of Cognition Gordon Research Conference & Gordon Research Semin
2014年认知神经生物学戈登研究会议
- 批准号:
8780089 - 财政年份:2014
- 资助金额:
$ 177.35万 - 项目类别:
相似国自然基金
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 177.35万 - 项目类别:
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 177.35万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 177.35万 - 项目类别:
iTEST: Introspective Accuracy as a Novel Target for Functioning in Psychotic Disorders
iTEST:内省准确性作为精神障碍功能的新目标
- 批准号:
10642405 - 财政年份:2023
- 资助金额:
$ 177.35万 - 项目类别: