Mitochondrial metabolism as a target of breast cancer therapy

线粒体代谢作为乳腺癌治疗的目标

基本信息

  • 批准号:
    10174751
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Significance – Breast cancer (BC) is one of the most common causes of cancer deaths for women with increasing incidence among women Veterans in the VA Health Care System. Patient survival has improved dramatically for primary BC but metastatic BC, for which targeted agents are usually not available, is common in African-American Veterans and is largely incurable. Most BC treatments target proliferating tumor cells that rely on glycolysis to fuel their metabolic needs. However, metastatic BC may exhibit a cancer stem cell phenotype with considerable dormancy and acquired drug resistance. These BC, including triple negative BC (TNBC), are often dependent on mitochondrial respiration (oxidative phosphorylation; oxphos) to generate energy and promote survival. Since there are no targeted therapies for TNBC and since most mitochondrial-targeting drugs exhibit substantial toxicity, there is a need to find new and safer therapeutic agents. Using a direct drug discovery approach and computer-assisted drug design (CADD), we identified novel small molecules that interfere with protein:DNA binding and transcriptional activity. While normal epithelial cells were relatively resistant, a lead compound (CADD522) inhibited BC cell proliferation and tumorsphere formation, delayed tumor growth and metastasis in vivo, and inhibited mitochondrial adenosine triphosphate (ATP) synthase and respiration (oxygen consumption) while increasing the levels of reactive oxygen species (ROS). Premise – Understanding the molecular mechanisms of targeting mitochondrial ATP synthase to elevate ROS in cancer cells will likely result in novel therapeutics against metastatic BC. Patients with drug-resistant, dormant or metastatic disease could benefit from a therapeutic approach that targets mitochondrial oxphos by inhibiting ATP synthase. Therefore, we propose the hypothesis that targeting mitochondrial metabolism with a novel ATP synthase inhibitor will inhibit BC tumor progression and metastasis by lowering ATP levels, reducing cellular respiration, and increasing ROS damage for therapeutic benefit. Specific Aims – Specific Aim 1: Define the mechanistic basis for CADD522-mediated ATP synthase inhibition in restraining BC tumor cell proliferation. Mitochondrial oxygen consumption rate (OCR), global gene expression profiles and direct targeting of ATP synthase will be defined. Specific Aim 2: Determine the mechanisms through which CADD522-mediated OCR inhibition increases reactive oxygen species (ROS) to reduce glucose utilization. Redox balance, pyruvate dehydrogenase (PDH) activity, and TCA cycle flux will be measured. Specific Aim 3: Define the translational potential of mitochondrial targeting with CADD522 to promote ROS damage and inhibit BC growth and metastasis. In vitro toxicological assays and in vivo tumor models will assess translational potential after oral administration of a novel therapeutic agent. Overall Impact – Elucidating how reprogrammed cancer cell metabolism promotes BC progression may lead to strategies to prevent or treat metastatic BC. Using agents that target a tumor’s metabolic requirements is an innovative approach and may inhibit metastatic pathways involving mitochondrial metabolism (stem-like and/or slow-growing tumors). These mitochondria-targeted approaches will exploit differences between normal and cancer cells, which may ultimately have an impact on clinical efficacy and safety. Discovery of new metabolic biomarkers will aid in patient stratification and clinical evaluation thus providing strong justification for future investigational new drug development. In summary, these approaches will be fundamental in elucidating the translational potential of metabolic targeting, are of relevance to the VA health care mission, and will likely lead to the discovery of new treatments for Veterans with metastatic BC.
意义 - 乳腺癌(BC)是癌症死亡的最常见原因之一 VA卫生保健系统中女退伍军人的发病率增加。患者生存有所改善 对于主要卑诗省的动态而动态的,但对于通常不可用的靶向剂的转移性BC是常见的 在非裔美国退伍军人中,基本上是无法治愈的。大多数卑诗省治疗目标是针对增生的肿瘤细胞 依靠糖酵解来促进其代谢需求。但是,BC转移性可能会退出癌症干细胞表型 具有可考虑的休眠和获得的耐药性。这些BC,包括三重负BC(TNBC),是 通常取决于线粒体呼吸(氧化磷酸化; Oxphos)产生能量和 促进生存。由于没有针对TNBC的靶向疗法,而且大多数线粒体靶向药物 表现出很大的毒性,需要找到新的,更安全的治疗剂。使用直接药物发现 方法和计算机辅助的药物设计(CADD),我们确定了干扰的新型小分子 蛋白质:DNA结合和转录活性。虽然正常的上皮细胞相对抗性,但铅 化合物(CADD522)抑制了BC细胞增殖和肿瘤形成,肿瘤生长延迟 转移体内,并抑制线粒体三磷酸腺苷(ATP)合酶和呼吸(氧 消耗)同时增加活性氧(ROS)的水平。 前提 - 了解靶向线粒体ATP合酶升高ROS的分子机制 在癌细胞中,可能会导致针对BC转移性的新疗法。耐药性,休眠的患者 或转移性疾病可能受益于针对线粒体oxphos的治疗方法 抑制ATP合酶。因此,我们提出了以下假设:靶向线粒体代谢 一种新型的ATP合酶抑制剂将通过降低ATP水平抑制BC肿瘤的进展和转移 细胞呼吸,并增加ROS损伤以获得治疗益处。 具体目的 - 特定目标1:定义CADD522介导的ATP合酶抑制的机械基础 限制BC肿瘤细胞增殖。线粒体氧的消耗率(OCR),全球基因表达 将定义ATP合酶的轮廓和直接靶向。特定目标2:通过 CADD522介导的OCR抑制会增加活性氧(ROS)以减少葡萄糖利用。 将测量氧化还原平衡,丙酮酸脱氢酶(PDH)活性和TCA循环通量。具体目标3: 定义用CADD522靶向线粒体靶向的翻译潜力,以促进ROS损伤并抑制 BC生长和转移。体外毒理学评估和体内肿瘤模型将评估翻译 口服新型治疗剂后的潜力。 总体影响 - 阐明重编程的癌细胞代谢如何促进BC的进展可能导致 预防或治疗转移性BC的策略。使用针对肿瘤代谢需求的代理是一种 创新方法并可能抑制转移途径涉及线粒体代谢(类似于茎状和/或 生长缓慢的肿瘤)。这些以线粒体为目标的方法将利用正常和 癌细胞最终可能会对临床效率和安全产生影响。发现新代谢 生物标志物将有助于患者分层和临床评估,从而为未来提供强有力的理由 研究新药开发。总而言之,这些方法将是阐明 代谢靶向的转化潜力,与VA医疗保健任务相关,可能会领导 为通过转移性卑诗省的退伍军人发现新疗法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

ANTONINO PASSANIT...的其他基金

Mitochondrial metabolism as a target of breast cancer therapy
线粒体代谢作为乳腺癌治疗的目标
  • 批准号:
    10010890
    10010890
  • 财政年份:
    2020
  • 资助金额:
    --
    --
  • 项目类别:
Mitochondrial metabolism as a target of breast cancer therapy
线粒体代谢作为乳腺癌治疗的目标
  • 批准号:
    10664934
    10664934
  • 财政年份:
    2020
  • 资助金额:
    --
    --
  • 项目类别:
Transcriptional regulation of tumor growth
肿瘤生长的转录调控
  • 批准号:
    9275399
    9275399
  • 财政年份:
    2013
  • 资助金额:
    --
    --
  • 项目类别:
Transcriptional regulation of tumor growth
肿瘤生长的转录调控
  • 批准号:
    8541175
    8541175
  • 财政年份:
    2013
  • 资助金额:
    --
    --
  • 项目类别:
Transcriptional regulation of tumor growth
肿瘤生长的转录调控
  • 批准号:
    8764631
    8764631
  • 财政年份:
    2013
  • 资助金额:
    --
    --
  • 项目类别:
Novel Transcriptional Regulators of Angiogenesis
血管生成的新型转录调节因子
  • 批准号:
    7623500
    7623500
  • 财政年份:
    2006
  • 资助金额:
    --
    --
  • 项目类别:
Novel Transcriptional Regulators of Angiogenesis
血管生成的新型转录调节因子
  • 批准号:
    7425900
    7425900
  • 财政年份:
    2006
  • 资助金额:
    --
    --
  • 项目类别:
Novel Transcriptional Regulators of Angiogenesis
血管生成的新型转录调节因子
  • 批准号:
    7262615
    7262615
  • 财政年份:
    2006
  • 资助金额:
    --
    --
  • 项目类别:
Novel Transcriptional Regulators of Angiogenesis
血管生成的新型转录调节因子
  • 批准号:
    7149602
    7149602
  • 财政年份:
    2006
  • 资助金额:
    --
    --
  • 项目类别:
Runx specific angiogenesis inhibitors
Runx 特异性血管生成抑制剂
  • 批准号:
    6623458
    6623458
  • 财政年份:
    2002
  • 资助金额:
    --
    --
  • 项目类别:

相似海外基金

Racial disparities of open angle glaucoma: A study of mitochondria and oxidative stress in human trabecular meshwork
开角型青光眼的种族差异:人类小梁网线粒体和氧化应激的研究
  • 批准号:
    10735655
    10735655
  • 财政年份:
    2023
  • 资助金额:
    --
    --
  • 项目类别:
Identification of Trichomonas vaginalis resistance targets to inform future drug development
确定阴道毛滴虫耐药靶标,为未来药物开发提供信息
  • 批准号:
    10462312
    10462312
  • 财政年份:
    2023
  • 资助金额:
    --
    --
  • 项目类别:
Electronic cigarettes, oxidative stress and development of breast tumor
电子烟、氧化应激与乳腺肿瘤的发生
  • 批准号:
    10629814
    10629814
  • 财政年份:
    2023
  • 资助金额:
    --
    --
  • 项目类别:
Prenatal stress and diet, and the fetal epigenome
产前压力和饮食,以及胎儿表观基因组
  • 批准号:
    10523353
    10523353
  • 财政年份:
    2022
  • 资助金额:
    --
    --
  • 项目类别:
Promotion of Exclusive Breastfeeding in Children with Sickle Cell Disease for Improved Health Outcomes
促进镰状细胞病儿童纯母乳喂养以改善健康状况
  • 批准号:
    10693377
    10693377
  • 财政年份:
    2022
  • 资助金额:
    --
    --
  • 项目类别: