Modeling gene expression in yeast using large degenerate libraries

使用大型简并文库模拟酵母中的基因表达

基本信息

  • 批准号:
    10172925
  • 负责人:
  • 金额:
    $ 35.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Short sequence elements in DNA and RNA determine the levels and composition of mRNAs and proteins, making it critical that we can accurately model how any given sequence will affect transcription, splicing or translation. Such models of cis-regulation will fill in gaps in our knowledge of these core gene expression processes. Additionally, as large numbers of human genomes are sequenced, the ability to predict the effects of sequence variation on the ultimate levels of proteins will be integral to the interpretation of variation in regulatory sequences. Similarly, the construction of metabolic pathways with defined levels of expression and the engineering of synthetic gene networks require accurate knowledge of how regulatory sequences affect expression. This application seeks to use the yeast Saccharomyces cerevisiae as a test case for learning how any short regulatory sequence affects protein levels. A predictive model will be trained on a set of libraries two orders of magnitude more complex than have been characterized to date. Libraries will be generated of a growth reporter gene with a million random sequences of 50 nucleotides that comprise either a DNA element that regulates transcription or an RNA element that regulates splicing or translation. The libraries will be transformed into yeast, and the yeast will be placed under selection such that they grow according to the ability of each random sequence to contribute to protein expression. A convolution neural network approach will be used to learn the relationship between these “fitness” phenotypes and their associated genotypes. Although yeast is a single-celled eukaryote, it has been the source of most of the original findings on gene expression, and these findings form the basis for much of our knowledge of more complex eukaryotes. Furthermore, the short sequences in yeast that comprise the DNA- and RNA-binding sites of regulatory proteins tend to be comparable in size to those of other organisms. Yeast is used often in synthetic biology and metabolic engineering, and the work proposed here will result in novel tools for quantitatively controlling its gene expression. Initial results with a library of 5' untranslated regions (UTRs) indicate that we can construct a model to account for a large fraction of the observed variability in expression, and that the model extends to native sequence elements. The model allowed us to forward engineer 5' UTRs to have increased activity. Specific aims of this application are to assess the effects of random sequences targeted to upstream regulatory elements, core promoter elements, 5' UTRs, introns and 3' UTRs; to learn predictive and interpretable models using convolutional neural networks and to identify novel functional cis-regulatory elements; and to validate our models on native sequences and combinatorial libraries, and by engineering synthetic sequence elements with user-specified properties. In sum, the proposal seeks to construct a comprehensive and predictive model of regulatory sequence–function relationships for a well-studied single- celled eukaryote, providing a basis for similar studies on other organisms.
项目摘要 DNA和RNA中的短序列元素决定了mRNA和蛋白质的水平和组成, 至关重要的是,我们可以准确地建模任何给定序列将如何影响transtion 翻译。 进程。 序列变化在不可或缺的蛋白质蛋白质的最终水平上不可或缺的解释 调节序列。 合成基因网络的工程需要准确了解规律性序列如何影响AFFECT 表达方式。 任何短的调节序列都会影响蛋白质水平。 迄今为止的数量级比库的表征要复杂。 生长报告基因具有50个核苷酸的一百万个随机序列,该核苷酸包括DNA元素 调节调节剪接或翻译的RNA元素。 变成酵母,一年的选择,使它们根据能力增长 每个随机序列有助于蛋白质表达。 用于学习这些“健身”表型及其相关基因型之间的关系。 酵母是一种单细胞真核生物,它一直是Gene Express的原始发现的来源, 这些发现构成了更复杂的真核生物的基础。 调节蛋白的DNA和RNA结合位点的短序列往往是 与其他生物的大小相当。 工程和这里的作品将导致定量控制其基因的小说 表达式。 解释表达式观察到的可变性的很大一部分的模型,并且该模型延伸至 天然序列元素。 该应用程序的具体目的是针对上游的随机序列的效果 监管元素,核心启动子元素,5'UTR,内含子和3'UTR; 使用卷积神经网络的可解释模型,并确定新型功能顺序调节 元素并在本机序列和组合库中验证我们的模型 具有用户指定属性的合成序列元素。 定期序列的全面和预测模型 - 良好的单个单一的功能关系 细胞真核生物,为其他生物的类似研究提供了基础。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of sequence motifs in the yeast 3' untranslated region determined from massively parallel assays of random sequences.
  • DOI:
    10.1186/s13059-021-02509-6
  • 发表时间:
    2021-10-18
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
    Savinov A;Brandsen BM;Angell BE;Cuperus JT;Fields S
  • 通讯作者:
    Fields S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STANLEY FIELDS其他文献

STANLEY FIELDS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STANLEY FIELDS', 18)}}的其他基金

INTERROGATION OF E3 UBIQUITIN LIGASE CATALYSIS BY DEEP MUTATIONAL SCANNING
通过深度突变扫描研究 E3 泛素连接酶催化作用
  • 批准号:
    8365800
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:
CHARACTERIZATION OF SMALL MOLECULE METABOLITES
小分子代谢物的表征
  • 批准号:
    8365852
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:
A STRATEGY TO QUANTIFY PROTEIN STABILITY
量化蛋白质稳定性的策略
  • 批准号:
    8365801
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:
GENOME-WIDE ANALYSIS OF NASCENT TRANSCRIPTION IN SACCHAROMYCES CEREVISIAE
酿酒酵母新生转录的全基因组分析
  • 批准号:
    8365819
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:
MASSIVELY PARALLEL MEASUREMENT OF SRC KINASE ACTIVITY AND DRUG RESISTANCE IN VIV
VIV 中 SRC 激酶活性和耐药性的大规模并行测量
  • 批准号:
    8365921
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:
UNDERSTANDING THE MOLECULAR BASIS OF SELECTIVITY IN AKAP
了解 AKAP 选择性的分子基础
  • 批准号:
    8365785
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:
HIGH-RESOLUTION MAPPING OF PROTEIN SEQUENCE-FUNCTION RELATIONSHIPS
蛋白质序列-功能关系的高分辨率绘图
  • 批准号:
    8365920
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:
LARGE SCALE MEASUREMENT OF EPISTASIS TO IDENTIFY MUTATIONS THAT STABILIZE PROTEI
大规模测量上位性以鉴定稳定蛋白质的突变
  • 批准号:
    8365793
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:
WIDE VARIATION IN ANTIBIOTIC RESISTANCE PROTEINS IDENTIFIED BY FUNCTIONAL METAGE
通过功能计量鉴定的抗生素抗性蛋白的广泛变异
  • 批准号:
    8365808
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:
SEMINARS GIVEN BY STANLEY FIELDS
斯坦利·菲尔兹举办的研讨会
  • 批准号:
    8365853
  • 财政年份:
    2011
  • 资助金额:
    $ 35.09万
  • 项目类别:

相似海外基金

Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
  • 批准号:
    10725416
  • 财政年份:
    2023
  • 资助金额:
    $ 35.09万
  • 项目类别:
Pathogenesis of thrombotic microangiopathies
血栓性微血管病的发病机制
  • 批准号:
    10608740
  • 财政年份:
    2023
  • 资助金额:
    $ 35.09万
  • 项目类别:
Regulation of RNA sensing and viral restriction by RNA structures
RNA 结构对 RNA 传感和病毒限制的调节
  • 批准号:
    10667802
  • 财政年份:
    2023
  • 资助金额:
    $ 35.09万
  • 项目类别:
Glia Exclusive Gene Therapy
胶质细胞独家基因疗法
  • 批准号:
    10739502
  • 财政年份:
    2023
  • 资助金额:
    $ 35.09万
  • 项目类别:
Mechanisms of viral RNA maturation by co-opting cellular exonucleases
通过选择细胞核酸外切酶使病毒 RNA 成熟的机制
  • 批准号:
    10814079
  • 财政年份:
    2023
  • 资助金额:
    $ 35.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了