Treatment of arterial aneurysms using an injectable biomaterial
使用可注射生物材料治疗动脉瘤
基本信息
- 批准号:10171610
- 负责人:
- 金额:$ 60.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdhesionsAdhesivenessAdhesivesAneurysmAngiographyAnimalsArteriesAutopsyBerry AneurysmBiocompatible MaterialsBiomedical EngineeringBlood Coagulation DisordersCathetersCessation of lifeClinicalCoagulation ProcessCommon iliac artery structureCountryCoupledDangerousnessDataDistantEngineeringEnsureEquipment and supply inventoriesEtiologyFailureFamily suidaeFatality rateFormulationGeometryHemostatic AgentsHistologyHospitalsHumanIatrogenesisIliac VeinImageImmune responseIn VitroIncidenceInjectableInterventionLengthMedicalMedical StaffMedical centerModelingMorbidity - disease rateOperative Surgical ProceduresPatientsPerformancePrevalenceProceduresPropertyPublicationsRadiation Dose UnitRadiation exposureReportingRiskRodentRuptureRuptured AneurysmRuralSafetySeriesShapesSiteStructureTechnologyTestingTherapeutic EmbolizationThinnessTimeTissue EngineeringTranslational ResearchTreatment CostTreatment FailureWorkbasebiomaterial compatibilitybioprintingcostexperienceimplantationin vivominimally invasivemortalitypreventskillssubcutaneoussuccesssurveillance imagingtooltranslational medicine
项目摘要
Abstract
Arterial aneurysm rupture has a very high fatality rate. They can be fusiform or saccular in shape and can
occur anywhere in the body. Saccular aneurysms (SAs) carry a greater risk of morbidity and mortality because
they are more prone to rupture. These aneurysms can be idiopathic, iatrogenic, traumatic, or atherosclerotic in
etiology. Regardless of the cause, SAs are highly-lethal and warrant close imaging surveillance and treatment
to prevent a fatal rupture. The current standard of medical practice is primarily to treat SAs with minimally-
invasive endovascular interventions such as coil embolization. Despite substantial advancements in coil-
embolization technology, serious issues remain with current treatments, including difficulty in administration,
the possibility of treatment failure, and extreme cost. Coil embolization requires a unique set of highly-
specialized skills to navigate them within sub-millimeter micro-catheters to distant sites and require precise
deployment within fragile aneurysm sacs. As a result, such cases are very lengthy and expose patients and
medical staff to high radiation doses. While technical success of coil embolization may be high when
performed by experienced operators, clinical success reaches only 80%, with failures often resulting from
recanalization of the aneurysm and persistent flow through the coils in patients with coagulation disorders. In
fact, death is 10 times more likely to occur in patients with coagulopathy, even with endovascular coiling.
Furthermore, cost of treatment is excessive; coils can cost many thousands of dollars each and a typical case
may require 4-8 coils per aneurysm and in some cases many dozens. We hypothesize that by using cutting-
edge tissue engineering tools, it may be possible to produce a universal embolization biomaterial that is stable,
durable, hemostatic, adhesive, inexpensive, does not rely on coagulation for clinical success, and requires less
specialized skills to embolize SAs. This creative, bioengineering approach may reduce procedure time,
decrease radiation exposure, and reduce world-wide morbidity and mortality by removing the need for a costly
inventory enabling rural and 3rd world country hospitals to access such technology. We aim to develop a
minimally invasive biomaterial-based platform to fill aneurysm sacs using groundbreaking shear-thinning
biomaterials (STBs) based on our rich preliminary data. We will develop STBs for endovascular delivery
through catheters (Aim 1) and refine STB biocompatibility, adhesiveness, and performance in in vitro aneurysm
models (Aim 2). Finally, we will test the engineered STBs in porcine aneurysm models (Aim 3) that mimic the
structure of aneurysms in humans.
抽象的
动脉瘤破裂的死亡率非常高。它们的形状可以是梭形或囊状,并且可以
发生在身体的任何部位。囊状动脉瘤 (SA) 具有更高的发病率和死亡率风险,因为
它们更容易破裂。这些动脉瘤可以是特发性的、医源性的、外伤性的或动脉粥样硬化性的
病因学。无论原因如何,SA 都具有高度致命性,需要进行密切的影像学监测和治疗
以防止致命的破裂。目前的医疗实践标准主要是用最低限度的治疗SAs
侵入性血管内介入治疗,例如弹簧圈栓塞。尽管线圈方面取得了实质性进展
栓塞技术,目前的治疗仍然存在严重问题,包括管理困难,
治疗失败的可能性和极高的费用。弹簧圈栓塞术需要一套独特的高度
需要专业技能才能在亚毫米微导管内将它们导航到遥远的部位,并且需要精确的
部署在脆弱的动脉瘤囊内。因此,此类案件的时间非常长,并且暴露了患者和
医务人员受到高辐射剂量。虽然弹簧圈栓塞的技术成功率可能很高,但
由经验丰富的操作者进行,临床成功率仅达80%,失败的原因往往是
患有凝血障碍的患者的动脉瘤再通和线圈的持续血流。在
事实上,即使采用血管内弹簧圈栓塞,凝血功能障碍患者的死亡可能性也要高出 10 倍。
此外,治疗费用过高;每个线圈的成本可能高达数千美元,而一个典型的案例
每个动脉瘤可能需要 4-8 个线圈,在某些情况下需要数十个。我们假设通过使用切割-
边缘组织工程工具,有可能生产出稳定的通用栓塞生物材料,
耐用、止血、粘合、价格低廉、临床成功不依赖凝血,并且需要较少
栓塞 SA 的专业技能。这种创造性的生物工程方法可以减少手术时间,
减少辐射暴露,并通过消除昂贵的治疗需求来降低世界范围内的发病率和死亡率
库存使农村和第三世界国家医院能够获得此类技术。我们的目标是开发一个
基于微创生物材料的平台,利用突破性的剪切稀化来填充动脉瘤囊
基于我们丰富的初步数据的生物材料(STB)。我们将开发用于血管内输送的 STB
通过导管(目标 1)并改善 STB 的生物相容性、粘附性和体外动脉瘤的性能
模型(目标 2)。最后,我们将在猪动脉瘤模型中测试工程化的 STB(目标 3),该模型模仿了
人类动脉瘤的结构。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Roadmap on multifunctional materials for drug delivery.
- DOI:10.1088/2515-7639/ad05e8
- 发表时间:2024-01-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Assessing the aneurysm occlusion efficacy of a shear-thinning biomaterial in a 3D-printed model.
- DOI:10.1016/j.jmbbm.2022.105156
- 发表时间:2022-06
- 期刊:
- 影响因子:3.9
- 作者:Schroeder, Grant;Edalati, Masoud;Tom, Gregory;Kuntjoro, Nicole;Gutin, Mark;Gurian, Melvin;Cuniberto, Edoardo;Hirth, Elisabeth;Martiri, Alessia;Sposato, Maria Teresa;Aminzadeh, Selda;Eichenbaum, James;Alizadeh, Parvin;Baidya, Avijit;Haghniaz, Reihaneh;Nasiri, Rohollah;Kaneko, Naoki;Mansouri, Abraham;Khademhosseini, Ali;Sheikhi, Amir
- 通讯作者:Sheikhi, Amir
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Khademhosseini其他文献
Ali Khademhosseini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ali Khademhosseini', 18)}}的其他基金
Drug eluting injectable biomaterials for next generation chemoembolization
用于下一代化疗栓塞的药物洗脱可注射生物材料
- 批准号:
10397659 - 财政年份:2021
- 资助金额:
$ 60.75万 - 项目类别:
Healing enterocutaneous fistulas using bioengineered biomaterials
使用生物工程生物材料治愈肠皮瘘
- 批准号:
10384769 - 财政年份:2021
- 资助金额:
$ 60.75万 - 项目类别:
Drug eluting injectable biomaterials for next generation chemoembolization
用于下一代化疗栓塞的药物洗脱可注射生物材料
- 批准号:
10620134 - 财政年份:2021
- 资助金额:
$ 60.75万 - 项目类别:
Drug eluting injectable biomaterials for next generation chemoembolization
用于下一代化疗栓塞的药物洗脱可注射生物材料
- 批准号:
10230909 - 财政年份:2021
- 资助金额:
$ 60.75万 - 项目类别:
Healing enterocutaneous fistulas using bioengineered biomaterials
使用生物工程生物材料治愈肠皮瘘
- 批准号:
10532787 - 财政年份:2021
- 资助金额:
$ 60.75万 - 项目类别:
Treatment of arterial aneurysms using an injectable biomaterial
使用可注射生物材料治疗动脉瘤
- 批准号:
9883832 - 财政年份:2018
- 资助金额:
$ 60.75万 - 项目类别:
Engineering personalized micro-tumor ecosystems
设计个性化微肿瘤生态系统
- 批准号:
10261573 - 财政年份:2017
- 资助金额:
$ 60.75万 - 项目类别:
相似国自然基金
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROS清除型动态粘附水凝胶的制备及其在声带粘连防治中的作用与机制研究
- 批准号:82301292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 60.75万 - 项目类别:
Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
项目 1:定义 MICAL 依赖性胰腺癌细胞迁移机制
- 批准号:
10762144 - 财政年份:2023
- 资助金额:
$ 60.75万 - 项目类别:
Handheld 3D Bioprinting of Self-Healing Hydrogels for Vocal Fold Reconstruction
用于声带重建的自愈水凝胶的手持式 3D 生物打印
- 批准号:
10038971 - 财政年份:2020
- 资助金额:
$ 60.75万 - 项目类别:
Local Regulation of Angiogenesis by Microenvironment
微环境对血管生成的局部调节
- 批准号:
10376043 - 财政年份:2020
- 资助金额:
$ 60.75万 - 项目类别:
Handheld 3D Bioprinting of Self-Healing Hydrogels for Vocal Fold Reconstruction
用于声带重建的自愈水凝胶的手持式 3D 生物打印
- 批准号:
10228723 - 财政年份:2020
- 资助金额:
$ 60.75万 - 项目类别: