Mechanisms of Mechanical and Chemical Gating in Mechanosensitive Piezo1 Channels
机械敏感 Piezo1 通道中的机械和化学门控机制
基本信息
- 批准号:10166873
- 负责人:
- 金额:$ 32.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-05 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAgonistAgreementAmino AcidsArchitectureAutomobile DrivingBindingBinding SitesBiologicalBiological AssayCalciumCationsCellsChemicalsClinicalClosure by clampCoupledCouplingCryoelectron MicroscopyDNA Sequence AlterationDataDevelopmentDistalElectrophysiology (science)EngineeringErythrocytesExhibitsFree EnergyGoalsHandHomeostasisHyperalgesiaImageIon ChannelLightLinkLymphedemaMammalsMeasurementMechanical StimulationMechanicsMediatingMembraneMethodsModalityModelingModificationMolecularMolecular ConformationMonitorMotionMutagenesisMutationPathologyPathway AnalysisPeripheralPharmacologyPhysiologicalPhysiological ProcessesPiezo 1 ion channelPiezo 2 ion channelPiezo ion channelsPlayPositioning AttributeProcessProprioceptionProtein RegionProteinsReporterRoleShapesSignal TransductionSleep Apnea SyndromesStimulusStructureSwellingSystemTestingTherapeuticThermodynamicsTimeTissuesValidationVisceralallodyniablood pressure regulationbody systemdrug developmentexperimental studyfluorescence imaginghuman diseaseinterdisciplinary approachmechanical forcemechanotransductionmicroscopic imagingmillisecondmultidisciplinaryprotein functionproteoliposomesresponseshear stresssimulationsmall moleculetool
项目摘要
Abstract
Piezo1 and Piezo2 are mammalian cation-selective mechanosensitive ion channels homologs which open their
pore in response to various mechanical stimuli. Mechanotransduction signaling through Piezo channels plays a
central role in a bewildering variety of important physiological processes including red blood cell osmotic
homeostasis, somatic and visceral mechanosensation, proprioception, blood pressure regulation and
development and differentiation of many tissues and organ systems. Several human diseases including
xerocytosis and lymphedema have been directly linked to genetic mutations in Piezo channels and many studies
further indicate a role of Piezo-mediated signaling in allodynia and hyperalgesia and a possible role of Piezo
channels in sleep apnea. The development of drugs capable of selectively activating or inhibiting Piezo channels
represent a promising therapeutic opportunity for the treatment of some of these Piezo-related pathologies. To
date, Yoda1, a synthetic small molecule agonist capable of selectively activating Piezo1 with micromolar affinity,
represents the best small molecule candidate to expand the pharmacome of Piezo channels. Unfortunately, the
fundamental mechanisms by which Piezo channel sense mechanical forces and activates in the presence of
Yoda1 are still unknown. In this proposal we will address these two unsolved questions using a multidisciplinary
approach combining molecular dynamic (MD) stimulations and experimental assays. In our first aim, we will
identify rapid, force-induced structural rearrangements in Piezo1 by simulating the channel molecule in a
membrane under tension. On another hand, using force-clamp fluorimetry, we will probe local conformational
changes using spectroscopic measurements. This will be done by inserting conformational probes into strategic
positions of the channel expressed in cells while protein function is being monitored in real-time. This combination
of computations and experiments will allow us to capture structural dynamic information that happens in a
temporal window spanning several orders of magnitude, from microsecond to minutes. In our second Aim, we
will identify how Yoda1 interacts with and activates Piezo1. We have already identified a Yoda1 binding site
using a combination of predictive MD simulations and experimental validations. We will characterize structural
changes, changes in transition free energy, and modifications of allosteric residue-residue interactions that
happen upon Yoda1 binding. This aim will shed light on the mechanism of chemical activation of a Piezo channel
and will be invaluable to develop pharmacological agents with clinical value.
抽象的
压电1和压电2是哺乳动物阳离子选择机械敏感的离子通道,可打开其
孔响应各种机械刺激。通过压电通道的机械转导信号传导播放
在包括红细胞渗透在内的各种重要生理过程中的令人困惑的多种多样的中心作用
稳态,体细胞和内脏机械敏化,本体感受,血压调节和
许多组织和器官系统的开发和区分。几种人类疾病,包括
骨细胞增多症和淋巴水肿已与压电通道中的遗传突变直接相关,许多研究
进一步表明压电介导的信号传导在异常性和痛觉过敏中的作用以及压电的可能作用
睡眠呼吸暂停中的通道。能够选择性激活或抑制压电通道的药物的开发
代表了治疗其中一些与压电相关的病理的有前途的治疗机会。到
日期,Yoda1,一种合成的小分子激动剂,能够以微摩尔亲和力选择性激活压电1
代表了扩展压电通道的药物组的最佳小分子候选者。不幸的是,
压电通道感知机械力并在存在下激活的基本机制
Yoda1仍然未知。在此提案中,我们将使用多学科解决这两个未解决的问题
结合分子动力学(MD)刺激和实验测定的方法。在我们的第一个目标中,我们将
通过模拟A中的通道分子来确定压电1中力诱导的快速,力诱导的结构重排
膜下的膜。另一方面,使用力钳氟化法,我们将探测局部构象
使用光谱测量的变化。这将通过将构型探针插入战略性来完成
在实时监测蛋白质功能时,在细胞中表达的通道的位置。这种组合
计算和实验将使我们能够捕获发生在
时间窗口跨越了几个数量级,从微秒到几分钟。在我们的第二个目标中,我们
将确定Yoda1如何与Piezo1相互作用并激活Piezo1。我们已经确定了Yoda1结合位点
结合预测MD模拟和实验验证。我们将表征结构
变化,过渡能能的变化以及变构残基残基相互作用的修改,
发生在Yoda1结合上。这个目标将阐明压电通道的化学激活机理
并且将具有临床价值的药理学剂是无价的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YUN LUO其他文献
YUN LUO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YUN LUO', 18)}}的其他基金
Mechanisms of Mechanical and Chemical Gating in Mechanosensitive Piezo1 Channels
机械敏感 Piezo1 通道中的机械和化学门控机制
- 批准号:
10408005 - 财政年份:2019
- 资助金额:
$ 32.43万 - 项目类别:
Exploring the coupling between PIEZO1 subunits gating motions using TIRF
使用 TIRF 探索 PIEZO1 亚基之间的门控运动之间的耦合
- 批准号:
10381223 - 财政年份:2019
- 资助金额:
$ 32.43万 - 项目类别:
PHARMACOLOGICAL MODULATION OF PIEZO1 CHANNELS
Piezo1 通道的药理学调节
- 批准号:
10659738 - 财政年份:2019
- 资助金额:
$ 32.43万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A Novel Approach to Target Neutrophilic Airway Inflammation and Airway Hyperresponsiveness in Therapy-Resistant (Refractory) Asthma.
一种针对难治性哮喘中性粒细胞性气道炎症和气道高反应性的新方法。
- 批准号:
10659658 - 财政年份:2023
- 资助金额:
$ 32.43万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 32.43万 - 项目类别:
PPARdelta receptors and alcohol use phenotypes
PPARδ 受体和饮酒表型
- 批准号:
10682348 - 财政年份:2023
- 资助金额:
$ 32.43万 - 项目类别:
Structural and Allosteric Mechanisms of mGluR Activation
mGluR 激活的结构和变构机制
- 批准号:
10679316 - 财政年份:2023
- 资助金额:
$ 32.43万 - 项目类别: