Dynamic regulatory mechanisms of robust pattern formation in the neural tube
神经管中稳健模式形成的动态调节机制
基本信息
- 批准号:10162614
- 负责人:
- 金额:$ 33.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-13 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAnimalsBackBuffersCell SeparationCell ShapeCell divisionCellsCodeComplexComputer ModelsCongenital AbnormalityDataDegenerative DisorderDevelopmentDevelopmental BiologyDiagnosisDiffuseDiseaseDoseDysmorphologyEmbryoEmbryologyEquilibriumEvolutionFaceFeedbackFeedsFoundationsFundingGene DosageGene Expression ProfileGenesGeneticGleanGoalsGrantGrowthImageImage AnalysisInvestigationKnowledgeMalignant NeoplasmsMechanicsMethodologyMethodsModelingMolecularNeural Tube DefectsNeural tubeNoiseOperative Surgical ProceduresOrganOrganismPatternPattern FormationPhenotypePositioning AttributeProcessProteinsPublishingQuantitative MicroscopyRegulator GenesReproducibilityResearchSHH geneSea UrchinsShapesSignal TransductionSiteSomitesSourceSpecific qualifier valueSystemTestingTimeTissue EngineeringTissuesTo specifyVariantWorkZebrafishbasebeta cateninbiophysical propertiescell typecourse developmentdesigneggembryo stage 2engineering designexpectationfascinateinsightinterestlensmathematical modelmechanical pressuremorphogensmutantneural patterningnotch proteinnotochordpreventquantitative imagingresponse
项目摘要
Abstract
The long-term goal of our research is to understand the principles that permit developmental systems to
robustly construct embryos of the correct pattern, shape, and size. Developmental systems face a gamut of
variations from different sources including environmental, genetic, and stochastic, which manifest at multiple
levels from molecules to cells to organs. In the face of these challenges, organisms have been designed
through evolution to buffer the phenotype against these variations in order to robustly achieve a developmental
norm, a process Waddington termed canalization. As our knowledge of the molecular and cellular details of
patterning systems has expanded, there is now the opportunity to understand the systems level mechanisms
that give rise to robust pattern formation. Here we focus on pattern robustness through the lens of scaling and
size control. Scaling is a remarkable process in which the size of a pattern can be adjusted to the available
size of the tissue. Scaling has fascinated and baffled embryologists since the time of Hans Driesch who in
1885 found that when the blastomeres of a two-cell stage sea urchin embryo are separated, the result is not
two partial embryos but rather two complete embryos in which all their pattern is scaled by half. Similar results
have since been found in a variety of organisms, but the surgical manipulations required to generate size-
reduced animals are generally difficult and result in a lot of variability, thus limiting quantitative investigation.
Recently, we have developed a new method for generating zebrafish eggs of different size that is robust and
reproducible. Such embryos have qualitatively normal but scaled patterning and can give rise to viable adults.
At a molecular level we find that most gene expression patterns (e.g. morphogens and their targets) scale with
the tissues they pattern; however, a small subset of genes, the ones that sense tissue size to regulate scaling
(e.g. by interacting with morphogens), do not. Thus, these size altered embryos represent a powerful and
unique method to identify and determine the mechanisms of pattern scaling. Ultimately, tissue size is
determined by balancing the rates of proliferation and differentiation over the course of development. We have
found that the balance of proliferation and differentiation in the neural tube is under negative feedback control
by mechanical pressure/tissue packing. Here we will use a combination of quantitative imaging, molecular and
mechanical perturbations, and computer modeling to determine the systems-level mechanisms that allow: 1)
morphogen patterning to scale to fit the available space, and 2) proliferation and differentiation rates to be
balanced to cause a tissue to grow to fit the available space. These questions will be addressed in the
zebrafish neural tube, but we expect the resulting mechanisms to be widely applicable. Such an integrated
understanding is important for diagnosing and treating birth defects such as neural tube defects and in the
rational design of engineered tissues.
抽象的
我们研究的长期目标是了解允许发育系统
稳健地构建正确图案、形状和大小的胚胎。发展系统面临着一系列
来自不同来源(包括环境、遗传和随机)的变异,表现在多个方面
从分子到细胞再到器官的各个层面。面对这些挑战,生物体被设计出来
通过进化缓冲表型免受这些变异的影响,从而稳健地实现发育
沃丁顿将这一过程称为运河化。随着我们对分子和细胞细节的了解
模式系统已经扩展,现在有机会了解系统级机制
从而形成稳健的模式。在这里,我们通过缩放和
尺寸控制。缩放是一个非凡的过程,其中可以将图案的尺寸调整为可用的尺寸
组织的大小。自汉斯·德里施 (Hans Driesch) 时代以来,缩放一直让胚胎学家着迷又困惑。
1885年发现,当双细胞期海胆胚胎的卵裂球分离时,结果并不
两个部分胚胎,而是两个完整的胚胎,其中所有图案都按比例缩小了一半。类似的结果
此后已在多种生物体中发现,但产生尺寸所需的外科手术
减少动物通常很困难,并且会导致很大的变异性,从而限制了定量研究。
最近,我们开发了一种生成不同大小斑马鱼卵的新方法,该方法稳健且可靠
可重现。这样的胚胎具有质量正常但有鳞片的图案,并且可以产生可存活的成体。
在分子水平上,我们发现大多数基因表达模式(例如形态发生素及其靶标)随
他们图案化的组织;然而,一小部分基因,即感知组织大小以调节缩放的基因
(例如通过与形态发生素相互作用),不要。因此,这些尺寸改变的胚胎代表了强大且
识别和确定模式缩放机制的独特方法。最终,组织尺寸为
通过平衡发育过程中的增殖率和分化率来确定。我们有
发现神经管增殖和分化的平衡处于负反馈控制之下
通过机械压力/组织包装。在这里,我们将结合定量成像、分子和
机械扰动和计算机建模以确定系统级机制,允许:1)
形态发生素图案按比例缩放以适应可用空间,2) 增殖和分化率
平衡以使组织生长以适应可用空间。这些问题将在
斑马鱼神经管,但我们期望由此产生的机制能够广泛适用。这样一个综合的
了解对于诊断和治疗神经管缺陷等出生缺陷以及在
工程组织的合理设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEAN G MEGASON其他文献
SEAN G MEGASON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEAN G MEGASON', 18)}}的其他基金
The mechanism of inner ear pressure homeostasis by the endolymphatic sac
内淋巴囊维持内耳压力稳态的机制
- 批准号:
9309422 - 财政年份:2017
- 资助金额:
$ 33.55万 - 项目类别:
The mechanism of inner ear pressure homeostasis by the endolymphatic sac
内淋巴囊维持内耳压力稳态的机制
- 批准号:
10090586 - 财政年份:2017
- 资助金额:
$ 33.55万 - 项目类别:
Dynamic regulatory mechanisms of robust pattern formation in the neural tube
神经管中稳健模式形成的动态调节机制
- 批准号:
10417127 - 财政年份:2015
- 资助金额:
$ 33.55万 - 项目类别:
Dynamic regulatory mechanisms of robust pattern formation in the neural tube
神经管中稳健模式形成的动态调节机制
- 批准号:
9199417 - 财政年份:2015
- 资助金额:
$ 33.55万 - 项目类别:
Dynamic regulatory mechanisms of robust pattern formation in the neural tube
神经管中稳健模式形成的动态调节机制
- 批准号:
9817112 - 财政年份:2015
- 资助金额:
$ 33.55万 - 项目类别:
Streamlined cloning of auditory and vestibular mutants by whole genome sequencing
通过全基因组测序简化听觉和前庭突变体的克隆
- 批准号:
8411127 - 财政年份:2012
- 资助金额:
$ 33.55万 - 项目类别:
Streamlined cloning of auditory and vestibular mutants by whole genome sequencing
通过全基因组测序简化听觉和前庭突变体的克隆
- 批准号:
8224539 - 财政年份:2012
- 资助金额:
$ 33.55万 - 项目类别:
In toto imaging and genomics to decode ear hair cell formation and regeneration
全面成像和基因组学解码耳毛细胞的形成和再生
- 批准号:
8025935 - 财政年份:2010
- 资助金额:
$ 33.55万 - 项目类别:
In toto imaging and genomics to decode ear hair cell formation and regeneration
全面成像和基因组学解码耳毛细胞的形成和再生
- 批准号:
8212556 - 财政年份:2010
- 资助金额:
$ 33.55万 - 项目类别:
In toto imaging and genomics to decode ear hair cell formation and regeneration
全面成像和基因组学解码耳毛细胞的形成和再生
- 批准号:
8413441 - 财政年份:2010
- 资助金额:
$ 33.55万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 33.55万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 33.55万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 33.55万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 33.55万 - 项目类别:
REVAMP-PH: REpurposing Valsartan May Protect against Pulmonary Hypertension
REVAMP-PH:重新利用缬沙坦可以预防肺动脉高压
- 批准号:
10642368 - 财政年份:2023
- 资助金额:
$ 33.55万 - 项目类别: