Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
基本信息
- 批准号:10162658
- 负责人:
- 金额:$ 71.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdultAffectAgeAneurysmApoptosisArteriesAtomic Force MicroscopyBedsBiologicalBiomechanicsBlood VesselsCardiovascular systemCellsCervicalCessation of lifeClinicalComplexCoronary arteryCytoskeletal ModelingDataDevelopmentDiagnosisDiseaseDissectionEmbryoEndothelial CellsEndotheliumEtiologyExhibitsFatal OutcomeFemaleFibroblastsFibromuscular DysplasiaFibrosisGenesGeneticGenetic studyGenomicsGoalsHistopathologyHumanHypertensionImpairmentIn VitroIschemiaKnock-outKnowledgeLiquid ChromatographyMedicalMesenteryMolecularMusMyocardial InfarctionNamesNational Heart, Lung, and Blood InstitutePathogenesisPatientsPatternPhenotypePilot ProjectsPrevalenceProductionPropertyProteinsProteomicsRare DiseasesRegulator GenesReporterReportingResolutionRoleRuptured AneurysmSamplingSeriesSmooth Muscle MyocytesStenosisStrokeSurfaceSystemTechniquesTunica MediaVascular Smooth MuscleWomanangiogenesisbasecardiovascular effectsin vitro Assayin vivoinsightknock-downmalformationmigrationoverexpressionrecogninsrenal arteryresponsesenescencesingle-cell RNA sequencingtandem mass spectrometrytooltranscriptome sequencingubiquitin-protein ligaseworking group
项目摘要
PROJECT SUMMARY
Fibromuscular dysplasia (FMD) is an understudied and sometimes fatal medical enigma that can cause arterial
fibrosis, stenosis, dissection, tortuosity, aneurysm and occlusion, throughout the body. Mean age at diagnosis is 50-
55 yrs and 94% are female. Although it has a prevalence of up to 5% in females, there is no specific treatment, and
very little is known about its etiology. In the press, this lack of knowledge, underappreciated prevalence and
sometimes fatal outcomes have led to FMD being called “The Rare Disease That Isn’t” (WSJ, June 27, 2009).
Our team, world leaders in FMD, have advanced our knowledge of its clinical features. To address the lack of
understanding about its cause, in 2013 we initiated the DEFINE-FMD study - a large, functional ‘omics study of the
genetic and molecular basis of FMD. Already, DEFINE-FMD has helped provide important insights into the cause of
FMD, showing that it has a complex (non-Mendelian) genetic basis. Here, we propose detailed functional and
mechanistic studies to understand a top causal candidate for FMD that was identified in the DEFINE-FMD study – a
critical regulatory gene network (RGN) we refer to as the “FMD-RGN.” Using differing approaches, we have
repeatedly validated the association of this RGN with FMD, with P values consistently less than 1 x 10-16. In addition,
we have identified that one of the top key drivers of the FMD-RGN is UBR4 (ubiquitin protein ligase E3 component n-
recognin 4). UBR4 is a strong causal candidate for FMD, and we have already confirmed that it exerts strong effects
on modulating the expression levels of other genes in the FMD-RGN. As our overall goals we aim to determine the
specific effects of the FMD-RGN on the vascular cell and arterial phenotypes, and to understand the role of UBR4 in
governing the FMD-RGN and in causing FMD. • In Specific Aim 1 we will undertake detailed analyses of the
impact of UBR4 and the FMD-RGN on the cellular phenotype. We will perform a series of in vitro studies using
human fibroblasts with knockdown and overexpression of UBR4 to understand the role of this gene and the FMD-
RGN in FMD. • In Specific Aim 2 we will characterize the in vivo cardiovascular effects of cell-specific Ubr4
deletion. We will perform a series of in vivo studies in mice with endothelial-, smooth muscle cell-, and fibroblast-
specific Ubr4 deletion. We will provide a detailed characterization of the cardiovascular phenotypes of these mouse
lines, including histopathology, biomechanical properties by atomic force microscopy, and proteomics using liquid
chromatography tandem mass spectrometry. • In Specific Aim 3 we will perform further studies to understand
the in vivo fate and function of vascular cells expressing UBR4. We will apply single cell RNA sequencing and
other cutting edge techniques to freshly obtained mouse and human artery samples to provide a decisive in vivo
characterization of human UBR4-expressing vascular cells, and the cell-specific phenotypic effects of Ubr4 deletion
in mice. Collectively, using these integrated but independent approaches, this R01 will fully dissect the molecular
mechanisms of UBR4 and the FMD-RGN, to build a holistic functional picture of the vascular pathobiology of FMD.
As a disease first reported in 1938, we believe these proposed studies on FMD are imperative, and long overdue.
项目概要
纤维肌性发育不良 (FMD) 是一个尚未得到充分研究、有时甚至是致命的医学谜题,它可能导致动脉粥样硬化
全身纤维化、狭窄、夹层、迂曲、动脉瘤和闭塞,诊断时的平均年龄为 50 岁。
55岁,94%为女性,虽然女性患病率高达5%,但尚无特效治疗方法。
媒体对其病因知之甚少,缺乏认识,其患病率也未被充分认识。
有时致命的结果导致口蹄疫被称为“并非罕见的疾病”(《华尔街日报》,2009 年 6 月 27 日)。
我们的团队是口蹄疫领域的世界领导者,他们提高了我们对其临床特征的了解,以解决口蹄疫缺乏的问题。
为了了解其原因,我们于 2013 年启动了 DEFINE-FMD 研究——一项针对 FMD 的大型功能性组学研究。
DEFINE-FMD 已经为 FMD 的遗传和分子基础提供了重要的见解。
FMD,表明它具有复杂的(非孟德尔)遗传基础在这里,我们提出了详细的功能和原理。
机制研究,以了解 DEFINE-FMD 研究中确定的 FMD 的首要候选因果关系 -
我们将关键调控基因网络 (RGN) 称为“FMD-RGN”。
反复验证了该 RGN 与一致 FMD 的关联,P 值小于 1 x 10-16 此外,
我们已经确定 FMD-RGN 的最关键驱动因素之一是 UBR4(泛素蛋白连接酶 E3 成分 n-)
认识到 UBR4 是 FMD 的一个强有力的候选者,我们已经证实它具有很强的作用。
作为我们的总体目标,我们的目标是确定 FMD-RGN 中其他基因的表达水平。
FMD-RGN 对血管细胞和动脉表型的具体影响,并了解 UBR4 在
• 在具体目标1 中,我们将对FMD-RGN 进行详细分析。
UBR4 和 FMD-RGN 对细胞表型的影响 我们将使用该方法进行一系列体外研究。
敲低和过度表达 UBR4 的人成纤维细胞,以了解该基因和 FMD 的作用
RGN 在 FMD 中的应用 • 在具体目标 2 中,我们将描述细胞特异性 Ubr4 的体内心血管效应。
我们将在具有内皮细胞、平滑肌细胞和成纤维细胞的小鼠中进行一系列体内研究。
我们将提供这些小鼠心血管表型的详细特征。
线,包括组织病理学、原子力显微镜的生物力学特性以及使用液体的蛋白质组学
• 在特定目标3 中,我们将进行进一步的研究以了解。
我们将应用单细胞 RNA 测序来研究表达 UBR4 的血管细胞的体内命运和功能。
其他尖端技术对新鲜获得的小鼠和人类动脉样本提供了决定性的体内
表达人类 UBR4 的血管细胞的表征以及 Ubr4 缺失的细胞特异性表型效应
总的来说,使用这些集成但独立的方法,R01 将全面剖析分子。
UBR4 和 FMD-RGN 的机制,以构建 FMD 血管病理学的整体功能图。
作为 1938 年首次报道的一种疾病,我们认为这些针对 FMD 的研究势在必行,而且早就该进行了。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniella Kadian-Dodov其他文献
Daniella Kadian-Dodov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniella Kadian-Dodov', 18)}}的其他基金
Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
- 批准号:
10397407 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
- 批准号:
10609881 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
- 批准号:
9974068 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
相似国自然基金
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROS清除型动态粘附水凝胶的制备及其在声带粘连防治中的作用与机制研究
- 批准号:82301292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
- 批准号:
10752141 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Role of alveolar fibroblasts in extracellular matrix organization and alveolar type 1 cell differentiation
肺泡成纤维细胞在细胞外基质组织和肺泡1型细胞分化中的作用
- 批准号:
10731854 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Development and Translation of Granulated Human-Derived Biomaterials for Integrative Cartilage Repair
用于综合软骨修复的颗粒状人源生物材料的开发和转化
- 批准号:
10718170 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别: