Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
基本信息
- 批准号:10162658
- 负责人:
- 金额:$ 71.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdultAffectAgeAneurysmApoptosisArteriesAtomic Force MicroscopyBedsBiologicalBiomechanicsBlood VesselsCardiovascular systemCellsCervicalCessation of lifeClinicalComplexCoronary arteryCytoskeletal ModelingDataDevelopmentDiagnosisDiseaseDissectionEmbryoEndothelial CellsEndotheliumEtiologyExhibitsFatal OutcomeFemaleFibroblastsFibromuscular DysplasiaFibrosisGenesGeneticGenetic studyGenomicsGoalsHistopathologyHumanHypertensionImpairmentIn VitroIschemiaKnock-outKnowledgeLiquid ChromatographyMedicalMesenteryMolecularMusMyocardial InfarctionNamesNational Heart, Lung, and Blood InstitutePathogenesisPatientsPatternPhenotypePilot ProjectsPrevalenceProductionPropertyProteinsProteomicsRare DiseasesRegulator GenesReporterReportingResolutionRoleRuptured AneurysmSamplingSeriesSmooth Muscle MyocytesStenosisStrokeSurfaceSystemTechniquesTunica MediaVascular Smooth MuscleWomanangiogenesisbasecardiovascular effectsin vitro Assayin vivoinsightknock-downmalformationmigrationoverexpressionrecogninsrenal arteryresponsesenescencesingle-cell RNA sequencingtandem mass spectrometrytooltranscriptome sequencingubiquitin-protein ligaseworking group
项目摘要
PROJECT SUMMARY
Fibromuscular dysplasia (FMD) is an understudied and sometimes fatal medical enigma that can cause arterial
fibrosis, stenosis, dissection, tortuosity, aneurysm and occlusion, throughout the body. Mean age at diagnosis is 50-
55 yrs and 94% are female. Although it has a prevalence of up to 5% in females, there is no specific treatment, and
very little is known about its etiology. In the press, this lack of knowledge, underappreciated prevalence and
sometimes fatal outcomes have led to FMD being called “The Rare Disease That Isn’t” (WSJ, June 27, 2009).
Our team, world leaders in FMD, have advanced our knowledge of its clinical features. To address the lack of
understanding about its cause, in 2013 we initiated the DEFINE-FMD study - a large, functional ‘omics study of the
genetic and molecular basis of FMD. Already, DEFINE-FMD has helped provide important insights into the cause of
FMD, showing that it has a complex (non-Mendelian) genetic basis. Here, we propose detailed functional and
mechanistic studies to understand a top causal candidate for FMD that was identified in the DEFINE-FMD study – a
critical regulatory gene network (RGN) we refer to as the “FMD-RGN.” Using differing approaches, we have
repeatedly validated the association of this RGN with FMD, with P values consistently less than 1 x 10-16. In addition,
we have identified that one of the top key drivers of the FMD-RGN is UBR4 (ubiquitin protein ligase E3 component n-
recognin 4). UBR4 is a strong causal candidate for FMD, and we have already confirmed that it exerts strong effects
on modulating the expression levels of other genes in the FMD-RGN. As our overall goals we aim to determine the
specific effects of the FMD-RGN on the vascular cell and arterial phenotypes, and to understand the role of UBR4 in
governing the FMD-RGN and in causing FMD. • In Specific Aim 1 we will undertake detailed analyses of the
impact of UBR4 and the FMD-RGN on the cellular phenotype. We will perform a series of in vitro studies using
human fibroblasts with knockdown and overexpression of UBR4 to understand the role of this gene and the FMD-
RGN in FMD. • In Specific Aim 2 we will characterize the in vivo cardiovascular effects of cell-specific Ubr4
deletion. We will perform a series of in vivo studies in mice with endothelial-, smooth muscle cell-, and fibroblast-
specific Ubr4 deletion. We will provide a detailed characterization of the cardiovascular phenotypes of these mouse
lines, including histopathology, biomechanical properties by atomic force microscopy, and proteomics using liquid
chromatography tandem mass spectrometry. • In Specific Aim 3 we will perform further studies to understand
the in vivo fate and function of vascular cells expressing UBR4. We will apply single cell RNA sequencing and
other cutting edge techniques to freshly obtained mouse and human artery samples to provide a decisive in vivo
characterization of human UBR4-expressing vascular cells, and the cell-specific phenotypic effects of Ubr4 deletion
in mice. Collectively, using these integrated but independent approaches, this R01 will fully dissect the molecular
mechanisms of UBR4 and the FMD-RGN, to build a holistic functional picture of the vascular pathobiology of FMD.
As a disease first reported in 1938, we believe these proposed studies on FMD are imperative, and long overdue.
项目摘要
纤维肌发育不良(FMD)是一种理解的,有时是致命的谜团,可能引起动脉
纤维化,狭窄,解剖,曲折,动脉瘤和阻塞,整个身体。诊断时的平均年龄为50-
55岁和94%是女性。尽管女性的患病率最高为5%,但没有具体的治疗方法,并且
关于其病因知之甚少。在媒体中,缺乏知识,不足的流行率和
有时,致命的结果导致FMD被称为“罕见疾病”(WSJ,2009年6月27日)。
我们的团队,FMD的世界领导者,提高了我们对临床特征的了解。解决缺乏
了解它的原因,2013年,我们启动了定义 - FMD研究 - 一项大型功能性的'OMICS研究
FMD的遗传和分子基础。 Define-FMD已经有助于提供有关原因的重要见解
FMD,表明它具有复杂的(非孟德尔)遗传基础。在这里,我们提出了详细的功能和
理解FMD的最高因果候选者的机理研究,该候选者已在Define-FMD研究中鉴定出来 - A
关键调节基因网络(RGN)我们称为“ FMD-RGN”。使用不同的方法,我们有
反复验证了该RGN与FMD的关联,P值始终小于1 x 10-16。此外,
我们已经确定FMD-RGN的主要主要驱动因素之一是UBR4(泛素蛋白连接酶E3成分N-
识别4)。 UBR4是FMD的强大因果候选者,我们已经确认它会发挥强大的作用
调节FMD-RGN中其他基因的表达水平。作为我们的整体目标,我们旨在确定
FMD-RGN对血管细胞和动脉表型的具体作用,并了解UBR4在
管理FMD-RGN并引起FMD。 •在特定目标1中,我们将对
UBR4和FMD-RGN对细胞表型的影响。我们将使用
人类成纤维细胞具有UBR4的敲低和过表达,以了解该基因和FMD-的作用
RGN在FMD中。 •在特定目标2中,我们将表征细胞特异性UBR4的体内心血管效应
删除。我们将对具有内皮细胞,平滑肌细胞和成纤维细胞的小鼠进行一系列体内研究
特定的UBR4删除。我们将提供这些小鼠心血管表型的详细表征
线,包括组织病理学,原子力显微镜生物力学特性和使用液体的蛋白质组学
色谱串联质谱。 •在特定目标3中,我们将进行进一步的研究以了解
表达UBR4的血管细胞的体内命运和功能。我们将应用单细胞RNA测序和
新鲜获得的小鼠和人动脉样品的其他尖端技术提供了决定性的体内
人类UBR4表达血管细胞的表征以及UBR4缺失的细胞特异性表型效应
在老鼠中。总的来说,使用这些集成但独立的方法,该R01将完全剖析分子
UBR4和FMD-RGN的机制,以构建FMD血管病理学的整体功能图。
作为1938年首次报道的疾病,我们认为这些关于FMD的拟议研究是必须的,而且早就应该了。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniella Kadian-Dodov其他文献
Daniella Kadian-Dodov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniella Kadian-Dodov', 18)}}的其他基金
Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
- 批准号:
10397407 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
- 批准号:
10609881 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
- 批准号:
9974068 - 财政年份:2020
- 资助金额:
$ 71.92万 - 项目类别:
相似国自然基金
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
The Role of Bone Sialoprotein in Modulating Periodontal Development and Repair
骨唾液酸蛋白在调节牙周发育和修复中的作用
- 批准号:
10752141 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Role of alveolar fibroblasts in extracellular matrix organization and alveolar type 1 cell differentiation
肺泡成纤维细胞在细胞外基质组织和肺泡1型细胞分化中的作用
- 批准号:
10731854 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别:
Development and Translation of Granulated Human-Derived Biomaterials for Integrative Cartilage Repair
用于综合软骨修复的颗粒状人源生物材料的开发和转化
- 批准号:
10718170 - 财政年份:2023
- 资助金额:
$ 71.92万 - 项目类别: