MAPPING FUNCTIONAL CONNECTIVITY WITH FLUORESCENCE MOLECULAR TOMOGRAPHY
使用荧光分子断层扫描绘制功能连接图
基本信息
- 批准号:10160971
- 负责人:
- 金额:$ 56.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:ARHGEF5 geneAgingAlzheimer&aposs DiseaseAnatomyAstrocytesBiological AssayBloodBlood VesselsBrainBrain regionCalciumCalcium SignalingCellsComputer softwareCoupledCouplingDataDevelopmentDiseaseEvolutionFormulationFunctional Magnetic Resonance ImagingGene ExpressionGenetic EngineeringGenetically Engineered MouseGlial Fibrillary Acidic ProteinGrantHeadHemoglobinHistologyHumanImageIschemic StrokeLightLightingMapsMeasuresMethodsModelingMolecularMonte Carlo MethodMusNatureNeuronsNoiseOptical TomographyOpticsPatternPerformancePhysiologicalPhysiologyReproducibilityRestSamplingSignal TransductionSpecificitySpeedStrokeStructureSystemTechniquesTechnologyUncertaintyValidationbasecalcium indicatorcell typecerebral hemodynamicscontrast imagingdata analysis pipelinedata modelingdesigndetectordiffuse optical tomographyflexibilityfluorescence molecular tomographyhemodynamicsimaging systemimprovedin vivo evaluationinstrumentationmouse modelnervous system disorderneuroimagingneurovascular couplingnon-invasive imagingoptical imagingpostnatalrelating to nervous systemstroke modelstroke recoverytomography
项目摘要
Project Summary:
Functional mapping of spontaneous brain activity with resting-state functional connectivity (FC) analysis
of fMRI data has recently become a dominant approach to mapping human brain function and continues
to gain momentum. However fMRI is based on cerebral hemodynamics that is relatively indirectly
coupled to neuronal activity and much slower (~0.3 Hz). Further the physiological underpinnings of FC
are relatively un-resolved, such that the mechanisms and implications altered FC are often unclear. For
example in ischemic stroke, it is well known that the penumbra surrounding the ischemic core has altered
neurovascular coupling (NVC), complicating the interpretation of the FC deficits. As FC measures are
extended further into studies of brain development, aging and disease, the importance of understanding
the fundamental basis for FC will grow. We recently developed hemodynamic mapping of functional
connectivity in mice using optical intrinsic signal imaging (fcOIS), and found fcOIS sensitive to several
neurological diseases, including mouse models of stroke and Alzheimer's disease. However, with the
advent of genetic engineering techniques for mice, there are new opportunities for extending optical
wide-field imaging to calcium activity, which is >10x faster and more directly coupled to neural activity
than hemoglobin. By combining calcium and hemodynamic imaging, there is the potential to quantify the
relationship between cell-specific calcium dynamics and hemodynamics throughout brain regions.
Further concurrent calcium and hemoglobin imaging could help resolve questions about the impact of
altered NVC in diseases such as stroke, and in early brain development. However, as yet, no imaging
system has been developed to examine these rich relationships throughout the mouse cortex. In this
project, we will develop optical imaging hardware and software for characterizing calcium dynamics in
mice engineered for genetically encoded calcium indicators (GECI's). For exemplar applications where
the functional networks are changing quickly, we will quantify FC during stroke recovery and brain
development, tracking the progression of both functional connectivity and neurovascular coupling (NVC).
Aim 1 will develop fluorescence molecular tomography (FMT) and diffuse optical tomography (DOT)
instrumentation for concurrent mapping of calcium and hemoglobin in mice. Aim 2 will optimize system
performance for high speed FMT/DOT of mouse brain function. Aim 3 will establish FMT/DOT for
mapping the functional networks of cell-specific calcium signals in mice with GECIs. Concurrent imaging
with hemoglobin will enable mapping of neurovascular coupling. In aim 4, with establish feasibility of
FMT/DOT in both stroke recovery and brain developmental. In both applications we will quantify calcium-
FC and the influence of altered NVC on hemoglobin-FC.
项目概要:
通过静息态功能连接 (FC) 分析绘制自发大脑活动的功能图
最近,功能磁共振成像数据已成为绘制人类大脑功能图谱的主要方法,并且仍在继续
获得动力。然而,功能磁共振成像基于脑血流动力学,相对间接
与神经元活动耦合并且速度慢得多(~0.3 Hz)。进一步了解 FC 的生理基础
相对而言尚未解决,因此改变 FC 的机制和影响通常不清楚。为了
以缺血性中风为例,众所周知,缺血性核心周围的半影已经改变
神经血管耦合(NVC),使 FC 缺陷的解释变得复杂。由于 FC 措施是
进一步扩展到大脑发育、衰老和疾病的研究中,理解的重要性
FC的基本基础将会增长。我们最近开发了功能性血流动力学图
使用光学内在信号成像 (fcOIS) 检测小鼠的连接性,并发现 fcOIS 对多种信号敏感
神经系统疾病,包括中风和阿尔茨海默病的小鼠模型。然而,随着
小鼠基因工程技术的出现,为扩展光学提供了新的机会
对钙活动进行广域成像,速度快 10 倍以上,并且与神经活动更直接耦合
比血红蛋白。通过结合钙和血流动力学成像,有可能量化
整个大脑区域细胞特异性钙动力学和血流动力学之间的关系。
进一步并发的钙和血红蛋白成像可以帮助解决有关影响的问题
NVC 在中风等疾病和早期大脑发育中发生改变。但目前还没有成像
已经开发出系统来检查整个小鼠皮层的这些丰富的关系。在这个
项目,我们将开发光学成像硬件和软件,用于表征钙动力学
基因编码钙指示剂(GECI)的小鼠。对于示例应用程序,其中
功能网络正在快速变化,我们将量化中风恢复期间的 FC 和大脑
开发,跟踪功能连接和神经血管耦合(NVC)的进展。
目标1将开发荧光分子断层扫描(FMT)和扩散光学断层扫描(DOT)
用于同时绘制小鼠钙和血红蛋白图谱的仪器。目标2将优化系统
小鼠大脑功能的高速 FMT/DOT 性能。目标 3 将建立 FMT/DOT
用 GECI 绘制小鼠细胞特异性钙信号的功能网络。并发成像
与血红蛋白的结合将能够绘制神经血管耦合图。在目标 4 中,建立可行性
FMT/DOT 在中风恢复和大脑发育中的作用。在这两种应用中,我们都会量化钙-
FC 和改变的 NVC 对血红蛋白-FC 的影响。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effective Connectivity Measured Using Optogenetically Evoked Hemodynamic Signals Exhibits Topography Distinct from Resting State Functional Connectivity in the Mouse.
- DOI:10.1093/cercor/bhx298
- 发表时间:2018-01-01
- 期刊:
- 影响因子:0
- 作者:Bauer AQ;Kraft AW;Baxter GA;Wright PW;Reisman MD;Bice AR;Park JJ;Bruchas MR;Snyder AZ;Lee JM;Culver JP
- 通讯作者:Culver JP
Separability of calcium slow waves and functional connectivity during wake, sleep, and anesthesia.
- DOI:10.1117/1.nph.6.3.035002
- 发表时间:2019-07-01
- 期刊:
- 影响因子:5.3
- 作者:Brier, Lindsey M;Landsness, Eric C;Culver, Joseph P
- 通讯作者:Culver, Joseph P
Normalization of optical fluence distribution for three-dimensional functional optoacoustic tomography of the breast.
- DOI:10.1117/1.jbo.27.3.036001
- 发表时间:2022-03
- 期刊:
- 影响因子:3.5
- 作者:Park S;Brooks FJ;Villa U;Su R;Anastasio MA;Oraevsky AA
- 通讯作者:Oraevsky AA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH P CULVER其他文献
JOSEPH P CULVER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH P CULVER', 18)}}的其他基金
Naturalistic Brain Mapping in Children with Diffuse Optical Tomography
利用漫射光学断层扫描对儿童进行自然脑图绘制
- 批准号:
10720660 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
Cortical Network Modulation by Subthalamic Nucleus Deep Brain Stimulation
丘脑底核深部脑刺激的皮质网络调节
- 批准号:
10220160 - 财政年份:2019
- 资助金额:
$ 56.7万 - 项目类别:
Cortical Network Modulation by Subthalamic Nucleus Deep Brain Stimulation
丘脑底核深部脑刺激的皮质网络调节
- 批准号:
10452517 - 财政年份:2019
- 资助金额:
$ 56.7万 - 项目类别:
Cortical Network Modulation by Subthalamic Nucleus Deep Brain Stimulation
丘脑底核深部脑刺激的皮质网络调节
- 批准号:
9817262 - 财政年份:2019
- 资助金额:
$ 56.7万 - 项目类别:
Cortical Network Modulation by Subthalamic Nucleus Deep Brain Stimulation
丘脑底核深部脑刺激的皮质网络调节
- 批准号:
10009477 - 财政年份:2019
- 资助金额:
$ 56.7万 - 项目类别:
Wireless High-Density Diffuse Optical Tomography for Decoding Brain Activity
用于解码大脑活动的无线高密度漫射光学断层扫描
- 批准号:
10244979 - 财政年份:2018
- 资助金额:
$ 56.7万 - 项目类别:
Wireless High-Density Diffuse Optical Tomography for Decoding Brain Activity
用于解码大脑活动的无线高密度漫射光学断层扫描
- 批准号:
10000137 - 财政年份:2018
- 资助金额:
$ 56.7万 - 项目类别:
HIGH-DENSITY OPTICAL TOMOGRAPHY IN PATIENTS WITH COCHLEAR IMPLANTS
人工耳蜗患者的高密度光学断层扫描
- 批准号:
9755396 - 财政年份:2018
- 资助金额:
$ 56.7万 - 项目类别:
Wireless High-Density Diffuse Optical Tomography for Decoding Brain Activity
用于解码大脑活动的无线高密度漫射光学断层扫描
- 批准号:
9791172 - 财政年份:2018
- 资助金额:
$ 56.7万 - 项目类别:
USING DIFFUSE OPTICAL TOMOGRAPHY TO UNDERSTAND DEEP BRAIN STIMULATIONS IMPACT ON CORTICAL NETWORKS
使用漫射光学断层扫描来了解深部大脑刺激对皮质网络的影响
- 批准号:
9336002 - 财政年份:2016
- 资助金额:
$ 56.7万 - 项目类别:
相似国自然基金
阿尔茨海默病高危风险基因加速认知老化的脑神经机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
β-羟丁酸通过hnRNP A1调控Oct4抑制星形胶质细胞衰老影响AD的发生
- 批准号:31900807
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
胰岛素抵抗导致神经元衰老的分子机制及在老年痴呆疾病中的作用研究
- 批准号:91849205
- 批准年份:2018
- 资助金额:200.0 万元
- 项目类别:重大研究计划
慢性睡眠障碍引起阿尔茨海默病tau蛋白病理变化及其表观遗传学机制研究
- 批准号:81771521
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
载脂蛋白E4基因加速认知老化的脑神经机制研究
- 批准号:31700997
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
Genetic Control of Phrenic Motor Neuron Development and Maintenance
膈运动神经元发育和维持的遗传控制
- 批准号:
10711755 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
Generation of a Complement C3 Conditional Knockout Mouse
补体 C3 条件性敲除小鼠的生成
- 批准号:
8741912 - 财政年份:2013
- 资助金额:
$ 56.7万 - 项目类别:
Generation of a Complement C3 Conditional Knockout Mouse
补体 C3 条件性敲除小鼠的生成
- 批准号:
8638529 - 财政年份:2013
- 资助金额:
$ 56.7万 - 项目类别:
LSUHSC CARC Alzheimer's Disease Supplement
LSUHSC CARC 阿尔茨海默病补充剂
- 批准号:
10712093 - 财政年份:1996
- 资助金额:
$ 56.7万 - 项目类别: