Biomechanical Optimization of Cardiac Valve Repair Operations
心脏瓣膜修复手术的生物力学优化
基本信息
- 批准号:10158270
- 负责人:
- 金额:$ 68.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-05 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAddressAdoptionAdvocateAnatomyAneurysmAnimal ModelAnimalsAnteriorAnticoagulationAortic Valve InsufficiencyAppearanceBiomechanicsBioprosthesis deviceCardiacCardiac Surgery proceduresClinicalComplexCustomDataDeteriorationDevicesDilatation - actionDimensionsDiseaseEarly InterventionEngineeringEvolutionExcisionFutureGeometryGuidelinesHeadHealthHeartHeart Valve DiseasesHeart ValvesHeightHemorrhageHumanImaging technologyIndividualInvestigationKnowledgeLeftLesionLocationMagnetic Resonance ImagingMeasuresMechanicsMitral ValveMitral Valve InsufficiencyMitral Valve ProlapseModelingModificationMorbidity - disease rateMotionOperating RoomsOperative Surgical ProceduresOutcomePatient CarePatientsPerformancePerioperativePhysiologicalPlant RootsPtosisPublishingRiskSpecimenStressSurgical ReplantationSurgical suturesSystemTechniquesTranslatingTubular formationUnited StatesValidationVentricularVisualaortic valvebasebiomechanical engineeringclinical applicationclinically relevantdesignexperimental studyhemodynamicshexapodimplantationimprovedin vivoinnovationmortalitynoveloperationpapillary musclereconstructionrepairedsensor technologytreatment guidelinesvalve replacement
项目摘要
PROJECT SUMMARY
Valvular heart disease is a significant cause of global morbidity and mortality. Evolving treatment guidelines
support earlier intervention and valve repair when possible. Advances in repair techniques have progressed in
the clinical arena primarily based upon anatomic and physiologic premises and occasionally based upon visual
and echocardiographic appearance. Yet, the biomechanical engineering fundamentals and principles underlying
valvuloplasty operations are rarely investigated. A more robust understanding of such principles and
incorporation into surgical procedures may enhance valve reparability and durability and thus ultimately translate
into less thromboembolic and hemorrhagic sequelae of long term anticoagulation for mechanical valve
replacement and less perioperative risks of reintervention for bioprosthetic valve deterioration. We have
designed and produced a novel 3D-printed left heart simulator into which mitral and aortic valve specimens can
be mounted and studied throughout the cardiac cycle. Multiple regurgitant disease states can be reproduced, as
can the current clinically-employed repair operations. Innovative biomechanical sensors and imaging
technologies facilitate the detailed analysis of the engineering principles within these operations. Comparisons
of and identification of notable functional differences among contemporary operative techniques have already
been discovered and published from investigations performed using this heart valve system. We propose to
study in depth aortic and mitral valve repair operations ex vivo and then validate findings in large animal models.
We are optimistic that the proposed experiments will yield important knowledge on current and potential future
clinical therapies for valve disease and can be rapidly translated to intraoperative patient care.
项目概要
瓣膜性心脏病是全球发病率和死亡率的重要原因。不断发展的治疗指南
尽可能支持早期干预和瓣膜修复。修复技术取得了长足的进步
临床领域主要基于解剖学和生理学前提,偶尔也基于视觉
和超声心动图表现。然而,生物力学工程的基础和原则
瓣膜成形术很少被研究。对这些原则有更深入的理解
纳入外科手术可能会增强瓣膜的可修复性和耐用性,从而最终转化为瓣膜
减少机械瓣膜长期抗凝的血栓栓塞和出血后遗症
更换和减少因生物瓣膜恶化而再次干预的围手术期风险。我们有
设计并生产了一种新型 3D 打印左心模拟器,二尖瓣和主动脉瓣标本可以放入其中
在整个心动周期中进行安装和研究。可以再现多种反流疾病状态,如
可以进行目前临床上采用的修复手术。创新的生物力学传感器和成像
技术有助于对这些操作中的工程原理进行详细分析。比较
当代手术技术之间显着功能差异的研究和识别已经
是通过使用该心脏瓣膜系统进行的研究发现并发表的。我们建议
深入研究主动脉瓣和二尖瓣离体修复手术,然后在大型动物模型中验证研究结果。
我们乐观地认为,拟议的实验将产生有关当前和潜在未来的重要知识
瓣膜疾病的临床治疗,可以快速转化为术中患者护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Y Joseph Woo其他文献
Y Joseph Woo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Y Joseph Woo', 18)}}的其他基金
Biomechanical Optimization of Cardiac Valve Repair Operations
心脏瓣膜修复手术的生物力学优化
- 批准号:
10684179 - 财政年份:2020
- 资助金额:
$ 68.97万 - 项目类别:
Biomechanical Optimization of Cardiac Valve Repair Operations
心脏瓣膜修复手术的生物力学优化
- 批准号:
10469367 - 财政年份:2020
- 资助金额:
$ 68.97万 - 项目类别:
Angiogenic tissue engineering to limit post-infarction ventricular remodeling
血管生成组织工程限制梗死后心室重塑
- 批准号:
8230794 - 财政年份:2008
- 资助金额:
$ 68.97万 - 项目类别:
Angiogenic tissue engineering to limit post-infarction ventricular remodeling
血管生成组织工程限制梗死后心室重塑
- 批准号:
7460022 - 财政年份:2008
- 资助金额:
$ 68.97万 - 项目类别:
Angiogenic Bioengineered Systems to Optimize Post-Infarction Myocardial Recovery
血管生成生物工程系统优化梗死后心肌恢复
- 批准号:
9887268 - 财政年份:2008
- 资助金额:
$ 68.97万 - 项目类别:
ANGIOGENIC TISSUE ENGINEERING TO LIMIT POST-INFARCTION VENTRICULAR REMODELING
血管生成组织工程限制梗死后心室重构
- 批准号:
9095414 - 财政年份:2008
- 资助金额:
$ 68.97万 - 项目类别:
Angiogenic tissue engineering to limit post-infarction ventricular remodeling
血管生成组织工程限制梗死后心室重塑
- 批准号:
7586585 - 财政年份:2008
- 资助金额:
$ 68.97万 - 项目类别:
Angiogenic tissue engineering to limit post-infarction ventricular remodeling
血管生成组织工程限制梗死后心室重塑
- 批准号:
8036046 - 财政年份:2008
- 资助金额:
$ 68.97万 - 项目类别:
Angiogenic tissue engineering to limit post-infarction ventricular remodeling
血管生成组织工程限制梗死后心室重塑
- 批准号:
7772268 - 财政年份:2008
- 资助金额:
$ 68.97万 - 项目类别:
ANGIOGENIC TISSUE ENGINEERING TO LIMIT POST-INFARCTION VENTRICULAR REMODELING
血管生成组织工程限制梗死后心室重构
- 批准号:
8853534 - 财政年份:2008
- 资助金额:
$ 68.97万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 68.97万 - 项目类别:
Determining reliability and efficacy of intraoperative sensors to reduce structural damage during cochlear implantation
确定术中传感器的可靠性和有效性,以减少人工耳蜗植入期间的结构损伤
- 批准号:
10760827 - 财政年份:2023
- 资助金额:
$ 68.97万 - 项目类别:
Multi-organ culture and pumping systems for ex vivo models of immunity in hybrid tissue-chips
用于混合组织芯片中免疫离体模型的多器官培养和泵系统
- 批准号:
10578463 - 财政年份:2023
- 资助金额:
$ 68.97万 - 项目类别:
Frugal Science Academy: Training K-12 innovators and democratizing synthetic biology tools
节俭科学院:培训 K-12 创新者并使合成生物学工具民主化
- 批准号:
10705579 - 财政年份:2022
- 资助金额:
$ 68.97万 - 项目类别:
Simulation and Education Tool for Physical Examinations of Orthopedic Pathologies
用于骨科病理体检的模拟和教育工具
- 批准号:
10484180 - 财政年份:2022
- 资助金额:
$ 68.97万 - 项目类别: