Defining and characterizing microenvironmental drivers of disseminated tumor cell dormancy in brain
定义和表征脑中播散性肿瘤细胞休眠的微环境驱动因素
基本信息
- 批准号:10158461
- 负责人:
- 金额:$ 32.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-05 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAgonistAgrinAstrocytesAutopsyBasement membraneBindingBlood VesselsBone MarrowBrainBreast Cancer CellBreast Cancer PatientBreast Cancer cell lineBreast cancer metastasisCancer PatientCell ProliferationClinicalClinical DataCuesDataDepositionDevelopmentDystroglycanEarly DiagnosisEnzymesGoalsHumanIndividualInvestigationLamininLesionLiverLungMalignant NeoplasmsMeasuresMediatingMetastatic breast cancerMetastatic malignant neoplasm to brainMutationNeoplasm MetastasisOrganOutcome MeasurePathway interactionsPatientsPenetrancePhasePublishingRecording of previous eventsResourcesSeedsSeminalSignal TransductionSignaling MoleculeSiteSoilSpecimenSuppressor-Effector T-LymphocytesSystemic TherapyTestingTherapeuticTimeTransgenic MiceTransgenic ModelUrsidae FamilyWomanWorkXenograft Modelbaseboneglycosylationhigh dimensionalityin vivoinnovationintravital imagingknock-downmalignant breast neoplasmmetastasis preventionmouse modelmutantneoplastic cellpreventprophylacticreceptor
项目摘要
Project Summary
Brain metastases arise later than metastases at other sites. Once they do, they are rapidly debilitating and
lethal. The time it takes for brain metastases to emerge suggests that a dormancy phase is involved. This
notion is supported by clinical and experimental data. Indeed, our own preliminary data show that breast
cancer cells become dormant upon entering the brain, and that emerging from this state is the rate-limiting step
of metastasis. These data indicate that targeting dormant disseminated tumor cells (DTCs) is a logical
approach to brain metastasis prevention. However, despite a growing understanding of dormancy mechanisms
in common metastatic sites like lung and bone marrow, a parallel understanding of how DTCs are driven into a
dormant state in brain has not developed. The overarching goal of this proposal is to address this issue. We
will formulate a basic framework for how the brain microenvironment drives DTCs into a dormant state, with
support from clinical specimens, so that we can leverage this understanding for therapies that keep DTCs
dormant indefinitely.
Our recent investigations have revealed that dormant DTCs occupy the brain’s vascular niche, where
perivascular astrocytes suppress their outgrowth. We suspect that astrocytic contributions to the parenchymal
basement membrane are responsible for DTC suppression, and that these contributions converge on a
common receptor: dystroglycan. Therefore, our hypotheses are that: (i) astrocytic basement membrane is a
key driver of DTC dormancy, and (ii) dystroglycan function must remain intact for DTCs to interpret these
signals. We will test these hypotheses through two specific aims:
Aim 1. Determine whether astrocytic basement membrane promotes and sustains DTC dormancy.
Aim 2. Elucidate the dystroglycan-mediated signaling axis that effects DTC quiescence in brain.
We have brought every relevant resource to bear in order to address these aims. These resources span: (i)
long-term intravital imaging to determine the fate of DTCs following ablation of DTC-associated astrocytes; (ii)
transgenic mice to measure the outcome of ablating astrocyte derived basement membrane molecules on DTC
fate; (iii) rare clinical specimens to establish whether astrocytes and astrocytic basement membrane are asso-
ciated with dormant DTCs in humans; and (iv) a host of mutant, over- and under- expression constructs to
solve how dystroglycan functions from the outside-in to drive DTC quiescence.
The significance and innovation of this work lie in the identification of the first dormancy drivers in brain,
ultimately to unravel dystroglycan-driven signaling that effects disseminated breast tumor cell quiescence. This
work will set the stage for agonists of dystroglycan function that serve as prophylactics for brain metastasis
prevention.
项目概要
脑转移比其他部位的转移出现得晚,一旦发生,它们就会迅速衰弱并恶化。
脑转移出现所需的时间表明存在休眠阶段。
事实上,我们自己的初步数据表明,乳房。
癌细胞在进入大脑后会进入休眠状态,从这种状态中出现是限速步骤
这些数据表明,靶向休眠播散性肿瘤细胞(DTC)是合乎逻辑的。
然而,尽管人们对休眠机制的了解不断加深。
在常见的转移部位(如肺和骨髓)中,对 DTC 如何被驱动进入一个平行的理解
大脑中的休眠状态尚未发展为休眠状态。该提案的首要目标是解决这个问题。
将制定大脑微环境如何驱动 DTC 进入休眠状态的基本框架,其中
临床标本的支持,以便我们可以利用这种理解来治疗保留 DTC 的疾病
无限期地休眠。
我们最近的研究表明,休眠的 DTC 占据了大脑的血管生态位,其中
我们怀疑血管周围星形胶质细胞抑制其生长。
基底膜负责 DTC 抑制,并且这些贡献集中在
共同受体:肌营养不良聚糖因此,我们的假设是:(i)星形胶质细胞基底膜是一种。
DTC 休眠的关键驱动因素,并且 (ii) 肌营养不良聚糖功能必须保持完整,DTC 才能解释这些
我们将通过两个具体目标来检验这些假设:
目标 1. 确定星形胶质细胞基底膜是否促进和维持 DTC 休眠。
目标 2. 阐明影响大脑中 DTC 静止的肌营养不良聚糖介导的信号轴。
为了实现这些目标,我们利用了所有相关资源:(i)。
长期活体成像以确定 DTC 相关星形胶质细胞消融后的命运 (ii)
转基因小鼠测量 DTC 上星形胶质细胞来源的基底膜分子消融的结果
命运;(iii)罕见的临床标本以确定星形胶质细胞和星形胶质细胞基底膜是否相关
与人类休眠 DTC 相关;以及 (iv) 一系列突变、过度表达和表达不足的构建体
解决肌营养不良聚糖如何从外到内发挥作用以驱动 DTC 静止。
这项工作的意义和创新在于识别了大脑中第一个休眠驱动因素,
最终解开影响播散性乳腺肿瘤细胞静止的肌营养不良聚糖驱动的信号传导。
这项工作将为肌营养不良聚糖功能激动剂奠定基础,作为脑转移的预防剂
预防。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cyrus M Ghajar其他文献
Cyrus M Ghajar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cyrus M Ghajar', 18)}}的其他基金
Chemotherapy-driven evolution of the vascular secretome and its role in therapeutic resistance
化疗驱动的血管分泌组进化及其在治疗抵抗中的作用
- 批准号:
10321289 - 财政年份:2021
- 资助金额:
$ 32.33万 - 项目类别:
Chemotherapy-driven evolution of the vascular secretome and its role in therapeutic resistance
化疗驱动的血管分泌组进化及其在治疗抵抗中的作用
- 批准号:
10601470 - 财政年份:2021
- 资助金额:
$ 32.33万 - 项目类别:
Chemotherapy-driven evolution of the vascular secretome and its role in therapeutic resistance
化疗驱动的血管分泌组进化及其在治疗抵抗中的作用
- 批准号:
10544717 - 财政年份:2021
- 资助金额:
$ 32.33万 - 项目类别:
Defining and characterizing microenvironmental drivers of disseminated tumor cell dormancy in brain
定义和表征脑中播散性肿瘤细胞休眠的微环境驱动因素
- 批准号:
10400671 - 财政年份:2020
- 资助金额:
$ 32.33万 - 项目类别:
Defining and characterizing microenvironmental drivers of disseminated tumor cell dormancy in brain
定义和表征脑中播散性肿瘤细胞休眠的微环境驱动因素
- 批准号:
10685943 - 财政年份:2020
- 资助金额:
$ 32.33万 - 项目类别:
Defining and characterizing microenvironmental drivers of disseminated tumor cell dormancy in brain
定义和表征脑中播散性肿瘤细胞休眠的微环境驱动因素
- 批准号:
10601281 - 财政年份:2020
- 资助金额:
$ 32.33万 - 项目类别:
Defining and characterizing microenvironmental drivers of disseminated tumor cell dormancy in brain
定义和表征脑中播散性肿瘤细胞休眠的微环境驱动因素
- 批准号:
10037395 - 财政年份:2020
- 资助金额:
$ 32.33万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Isolating the role of endogenous mu-opioid activity in the VTA during natural reward
分离自然奖赏期间 VTA 中内源性 mu-阿片活性的作用
- 批准号:
10749349 - 财政年份:2023
- 资助金额:
$ 32.33万 - 项目类别:
Targeting GPR84 to Overcome Macrophage Mediated Resistance to Immunotherapy
靶向 GPR84 克服巨噬细胞介导的免疫治疗耐药性
- 批准号:
10660122 - 财政年份:2023
- 资助金额:
$ 32.33万 - 项目类别:
The Role of MICU3 in Alzheimer's Disease Pathogenesis
MICU3 在阿尔茨海默病发病机制中的作用
- 批准号:
10677454 - 财政年份:2023
- 资助金额:
$ 32.33万 - 项目类别:
Functional interrogation of sensory neurons in inflammation
炎症中感觉神经元的功能询问
- 批准号:
10723822 - 财政年份:2023
- 资助金额:
$ 32.33万 - 项目类别: