A novel microfluidic platform to study exosome biology in PAH.
一种用于研究多环芳烃外泌体生物学的新型微流体平台。
基本信息
- 批准号:10158068
- 负责人:
- 金额:$ 23.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-25 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAnimal ModelAntibodiesBioinformaticsBiologicalBiological MarkersBiologyBlood VesselsCD81 geneCardiovascular systemCell Culture TechniquesCellsCharacteristicsChronicCulture MediaCultured CellsData SetDiseaseEndothelial CellsEndotheliumEtiologyExperimental ModelsExposure toGeneticGoalsHeart failureInflammationInflammatoryInjuryLab-On-A-ChipsLifeLungMachine LearningMediatingMethodsMicrofluidicsMolecularMolecular GeneticsNucleic AcidsOutcomePathologicPathologic ProcessesPatternPhasePhenotypePhysiologicalPhysiological ProcessesPopulationProcessProductionProteomicsReportingReproducibilityResolutionRoleSeedsSignal TransductionSorting - Cell MovementStressSurfaceTechniquesTechnologyTestingTherapeutic AgentsTimeVascular remodelingVisionangiogenesisbasecytokinedesignendothelial dysfunctionexosomeextracellular vesicleshemodynamicsmachine learning algorithmmagnetic beadsmonolayermultiple omicsnew technologynovelnovel therapeuticspressureprotein metabolitepulmonary arterial hypertensionresponseshear stressstressortechnological innovationtooltranscriptome sequencing
项目摘要
The endothelium is the cellular monolayer that covers the inner lining of the entire circulatory system. Endothelial
dysfunction is a feature of pulmonary arterial hypertension (PAH), a life-threatening disease associated with
abnormally high pulmonary pressures and chronic right heart failure. Due to the limitations of available static cell
culture and animal models, our understanding of the mechanisms that orchestrate the initiation and perseverance
of endothelial dysfunction in PAH remains incomplete. Given that endothelial dysfunction is a common finding in
PAH, an understanding of the mechanism behind maladaptive endothelial responses could help accelerate the
discovery of novel therapies for PAH. Presently, it is believed that endothelial derived exosomes contribute to
PAH by carrying signals that trigger maladaptive endothelial responses in the setting of injury. Exosomes are
cell-derived small (~30-150 nm) extracellular vesicles that carry proteins, metabolites and nucleic acids involved
in a variety of physiological and pathological processes. While it is known that exosomes carry molecular and
genetic factors associated with angiogenesis, inflammation and vasoreactivity, a comprehensive assessment of
exosome cargo of healthy and dysfunctional PMVECs has been hindered by current low-yield exosome isolation
techniques. These techniques cannot perform real-time dynamic exosome isolation from pulmonary
microvascular endothelial cells (PMVECs) exposed to PAH-associated stressors. To address this unmet need,
we have designed the MFES (Multifunctional Exosome Sorter) that can dissect the whole exosome population
into subpopulations based on size and surface markers. MFES is the first lab-on-a-chip platform that integrates:
1) a vessel-on-a-chip module for real-time characterization of PMVEC functional responses across a wide range
of physiological and pathological parameters, 2) a module for high-yield exosome size-based isolation, 3) a
surface marker based exosome sorting using magnetic beads, and 4) multi-omics phenotyping of exosomes of
PMVECs. Here, we are proposing a technology that can enable broadly to investigate the two main defining
characteristics of exosomal subtypes, i.e., size and surface markers, both separately independently, and in
combination sequentially. We will characterize changes in exosome cargo in healthy and PAH PMVECs exposed
to shear stress-related conditions in the MFES. We will isolate subpopulations of exosomes based on size and
surface markers and characterize them for their cargo (Aim 1). Then, we will determine whether exosomes
derived from stressed PMVECs can induce pathological changes in healthy PMVECs cultured in a microfluidic
culture chip (Aim 2). This technological innovation enables to study endothelial exosome biology in a setting that
represents the flow dynamics associated with PAH. Further, the use of cutting-edge -omics technologies,
bioinformatic analysis integrated with machine learning algorithms to analyze the purified exosomes is expected
to yield a comprehensive dataset of exosome cargo profiles and open exciting opportunities for investigating the
biological role of exosomes in PAH pathobiology and the testing of novel therapeutic agents.
内皮是覆盖整个循环系统内壁的单层细胞。内皮细胞
功能障碍是肺动脉高压(PAH)的一个特征,这是一种与肺动脉高压相关的危及生命的疾病
异常高的肺动脉压和慢性右心衰竭。由于可用静态单元的限制
文化和动物模型,我们对协调启动和坚持的机制的理解
PAH 中内皮功能障碍的研究仍然不完整。鉴于内皮功能障碍是常见的发现
PAH,了解适应不良内皮反应背后的机制可能有助于加速
发现 PAH 的新疗法。目前,人们认为内皮来源的外泌体有助于
PAH 通过携带信号在损伤时触发适应不良的内皮反应。外泌体是
细胞来源的小(~30-150 nm)细胞外囊泡,携带相关蛋白质、代谢物和核酸
各种生理和病理过程中。虽然已知外泌体携带分子和
与血管生成、炎症和血管反应性相关的遗传因素,综合评估
目前外泌体分离产量低,阻碍了健康和功能失调的 PMVEC 的外泌体运输
技术。这些技术无法从肺部实时动态分离外泌体
微血管内皮细胞 (PMVEC) 暴露于 PAH 相关应激源。为了解决这一未满足的需求,
我们设计了 MFES(多功能外泌体分选机),可以解剖整个外泌体群体
根据大小和表面标记分为亚群。 MFES 是第一个芯片实验室平台,集成了:
1) 片上容器模块,用于实时表征大范围 PMVEC 功能响应
生理和病理参数,2) 用于基于大小的高产外泌体分离的模块,3)
使用磁珠进行基于表面标记的外泌体分选,以及 4) 外泌体的多组学表型分析
PMVEC。在这里,我们提出了一种技术,可以广泛地研究两个主要定义
外泌体亚型的特征,即大小和表面标记,两者分别独立,并且在
依次组合。我们将描述健康和暴露的 PAH PMVEC 中外泌体货物的变化
MFES 中与剪切应力相关的条件。我们将根据大小和大小来分离外泌体的亚群
表面标记并描述其货物特征(目标 1)。然后,我们将确定外泌体是否
源自应激 PMVEC 的细胞可以诱导在微流体中培养的健康 PMVEC 发生病理变化
培养芯片(目标 2)。这项技术创新使得能够在以下环境中研究内皮外泌体生物学:
代表与 PAH 相关的流动动力学。此外,利用尖端组学技术,
预计将生物信息分析与机器学习算法相结合来分析纯化的外泌体
产生外泌体货物概况的综合数据集,并为研究提供令人兴奋的机会
外泌体在 PAH 病理学和新型治疗药物测试中的生物学作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINICIO A DE JESUS PEREZ其他文献
VINICIO A DE JESUS PEREZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINICIO A DE JESUS PEREZ', 18)}}的其他基金
The Wnt7a/ROR2 axis in the pathogenesis of pulmonary arterial hypertension
Wnt7a/ROR2轴在肺动脉高压发病机制中的作用
- 批准号:
10619368 - 财政年份:2022
- 资助金额:
$ 23.64万 - 项目类别:
A novel microfluidic platform to study exosome biology in PAH.
一种用于研究多环芳烃外泌体生物学的新型微流体平台。
- 批准号:
10378161 - 财政年份:2021
- 资助金额:
$ 23.64万 - 项目类别:
Stanford Undergraduate URM Summer Cardiovascular Research Program
斯坦福大学本科生夏季心血管研究项目
- 批准号:
10246191 - 财政年份:2019
- 资助金额:
$ 23.64万 - 项目类别:
Stanford Undergraduate URM Summer Cardiovascular Research Program
斯坦福大学本科生夏季心血管研究项目
- 批准号:
10021034 - 财政年份:2019
- 资助金额:
$ 23.64万 - 项目类别:
Stanford Undergraduate URM Summer Cardiovascular Research Program
斯坦福大学本科生夏季心血管研究项目
- 批准号:
10471319 - 财政年份:2019
- 资助金额:
$ 23.64万 - 项目类别:
Stanford Undergraduate URM Summer Cardiovascular Research Program
斯坦福大学本科生夏季心血管研究项目
- 批准号:
10686866 - 财政年份:2019
- 资助金额:
$ 23.64万 - 项目类别:
Endothelial-pericyte interactions in the pathogenesis of pulmonary arterial hypertension
肺动脉高压发病机制中的内皮-周细胞相互作用
- 批准号:
10522873 - 财政年份:2017
- 资助金额:
$ 23.64万 - 项目类别:
Endothelial-pericyte interactions in the pathogenesis of pulmonary arterial hypertension
肺动脉高压发病机制中的内皮-周细胞相互作用
- 批准号:
10689249 - 财政年份:2017
- 资助金额:
$ 23.64万 - 项目类别:
The Wnt7a/ROR2 axis in the pathogenesis of pulmonary arterial hypertension
Wnt7a/ROR2轴在肺动脉高压发病机制中的作用
- 批准号:
10869189 - 财政年份:2017
- 资助金额:
$ 23.64万 - 项目类别:
The Wnt7a/ROR2 axis in the pathogenesis of pulmonary arterial hypertension
Wnt7a/ROR2轴在肺动脉高压发病机制中的作用
- 批准号:
10609932 - 财政年份:2017
- 资助金额:
$ 23.64万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Concurrent volumetric imaging with multimodal optical systems
多模态光学系统的并行体积成像
- 批准号:
10727499 - 财政年份:2023
- 资助金额:
$ 23.64万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 23.64万 - 项目类别:
5T-IV: photoacoustic needle with beacon pulse for ultrasound guided vascular access with Tool-Tip Tracking and Tissue Typing
5T-IV:带有信标脉冲的光声针,用于通过工具提示跟踪和组织分型进行超声引导血管通路
- 批准号:
10677283 - 财政年份:2023
- 资助金额:
$ 23.64万 - 项目类别:
Integrating single-cell connectivity, gene expression, and function in zebra finches
整合斑胸草雀的单细胞连接、基因表达和功能
- 批准号:
10657971 - 财政年份:2023
- 资助金额:
$ 23.64万 - 项目类别:
Multiplex Ultrasound Imaging for the Detection of Head and Neck Lymph Node Micrometastases
用于检测头颈部淋巴结微转移的多重超声成像
- 批准号:
10870266 - 财政年份:2023
- 资助金额:
$ 23.64万 - 项目类别: