Nanosensors for sensitive brain-wide neurochemical imaging
用于敏感全脑神经化学成像的纳米传感器
基本信息
- 批准号:10154138
- 负责人:
- 金额:$ 142.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsArchitectureBehavioralBiochemicalBrainBrain DiseasesBuffersCaliberCell membraneCerebrospinal FluidCharacteristicsChemicalsContrast MediaDataDetectionDirected Molecular EvolutionDopamineEngineeringExhibitsFunctional Magnetic Resonance ImagingGoalsIceImageInfusion proceduresInjectionsKnowledgeLabelLaboratoriesLigandsLightLipidsLiposomesMagnetic Resonance ImagingMagnetismMeasurementMeasuresMediatingMembraneMethodsMicroscopicModelingMolecularMolecular ProbesNeurotransmittersPaperPeptidesPermeabilityPhysiologicalPlayProceduresProcessPublishingRattusRegulationRelaxationRodentRoleSamplingSeriesSerotoninSignal TransductionStimulusTechnologyTertiary Protein StructureWaterWorkYeastsbaseblood-brain barrier disruptionbrain parenchymabrain tissuecell typedesignexperimental studyhemodynamicsimaging agentimaging platformin vivointerstitialmedian forebrain bundleminimally invasivemonoaminenanosensorsneural circuitneurochemistrynovelpolypeptideresponsesensorspatiotemporalsubcellular targeting
项目摘要
The large-scale dynamics of neural circuitry depend on interactions among numerous neurochemical spe-
cies that play functionally distinct roles throughout the brain. Understanding the spatial and temporal character-
istics of chemical signaling is thus crucial for building mechanistic models of brain function. Our laboratory has
introduced paramagnetic neurotransmitter sensors that enable functional analysis of neurochemical phenomena
over large fields of view by molecular-level functional magnetic resonance imaging (molecular fMRI). We have
published applications of these sensors to spatiotemporal mapping of neurochemical phenomena in a series of
substantial papers. The scope of such experiments has however been limited by the modest sensitivity provided
by the existing probes, which must be applied at concentrations that substantially exceed physiological neuro-
transmitter levels. The goal of this proposal is to establish a platform technology for noninvasive neurochemical
imaging with substantially higher sensitivity, focusing initially on monoamine transmitters. Our approach is based
on a novel principle for biochemical sensing in MRI that uses paramagnetic liposomes as responsive contrast
agents. In this mechanism, the presence of neurotransmitter targets gates large contrast effects afforded by the
liposomes, giving rise to a formidable amplification factor with respect to previous probes. Using this design, we
predict that sensitivity to behaviorally relevant low-micromolar or submicromolar neurotransmitter concentrations
will be achieved, with minimal potential for buffering effects. In addition, our preliminary studies suggest that
wide-field brain delivery with these probes is achievable, and we also predict that perisynaptic cell type-specific
readouts can be obtained by targeting the liposomes.
Our work will address three Aims: In Aim 1, we will establish our liposome-based nanosensor (LBN) plat-
form by combining lipid, polypeptide, and small molecular components to establish the new sensing mechanism
we seek to exploit. We will use a variety of synthetic and molecular engineering methods to optimize this mech-
anism for detection of behaviorally relevant interstitial dopamine and serotonin concentrations, with the goal of
achieving sensitivity in the 0.1-1 µM range. In Aim 2, we will optimize strategies for brain-wide delivery of these
probes, exploiting chemically-mediated blood-brain barrier disruption and infusion into cerebrospinal fluid. We
will also implement a perisynaptic targeting approach. In Aim 3, we will validate liposome-based dopamine and
serotonin LBNs by molecular fMRI in live rat brains, with reference to parallel neurochemical and hemodynamic
fMRI measurements. In addition to establishing the novel neurochemical imaging platform we propose, these
experiments will yield first-of-their-kind data about the wide-field distribution of dopamine and serotonin signaling
in response to stimuli, as well as the relationship of these neurochemicals to conventional brain activity readouts.
Although the technology we will develop will initially be applied in sedated rodents, we expect it to be applicable
to many additional species and behavioral contexts.
神经边缘电路的大规模动力学取决于众多神经化学的spe-
在整个大脑中扮演功能不同的角色的电源。
因此,化学信号传导的istics对于脑功能的建立机制至关重要。
引入了顺磁性神经递质传感器,该传感器能够对神经化学现象的功能分析
通过分子级功能磁共振成像(分子fMRI)的大量视野
在曝光中的神经化学现象的时空映射中,本版本已发布的应用
但是,大量的论文。
通过现有探针,必须以大大超过生理神经学的浓度应用
发射器级别。
具有更高灵敏度的成像,最初集中在单胺发射器上。
在MRI中使用顺磁性脂质体作为大量对比的新型生化感测的新原理
试剂。
脂质体,导致相对于探针的强大扩增因子。
预测对行为相关的低微摩尔或亚微摩尔或提交的浓度的敏感性
将酸痛,除了缓冲效应的潜力最少。
使用这些探针的宽场大脑递送是可实现的,我们还预测,腹膜细胞类型特异性
可以通过靶向脂质体获得读数。
URK工作将三个目标:在AIM 1中,我们将建立基于脂质体的纳米传感器(LBN)平台
通过结合脂质,多肽和小分子成分形成形式,以建立新的感应机制
我们看到我们多种合成和分子工程方法来优化这种机甲 -
用于检测行为相关的间质多巴胺和5-羟色胺的anism,其目标关闭
在AIM 2中达到0.1-1 µm范围的灵敏度,我们将优化这些策略
探针,利用化学介导的血脑屏障排放和输注为脑液体
还将在AIM 3中实施靶向靶向方法。
血清素LBN通过分子fMRI在活大鼠大脑中,参考平行神经化学和血液动力学
FMRI测量除了建立NEVEL神经化学成像平台外,
实验将产生有关多巴胺和5-羟色胺信号传导的宽视野分布的首次数据
为了响应刺激以及这些神经化学物质与公约活动读数的关系。
尽管我们将开发的技术最初将用于镇静的啮齿动物,但我们希望它适用
对于许多其他物种和行为环境。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Jasanoff其他文献
Alan Jasanoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Jasanoff', 18)}}的其他基金
Analysis of integrated brain functions using hemogenetic imaging
使用血遗传学成像分析大脑的综合功能
- 批准号:
10365025 - 财政年份:2022
- 资助金额:
$ 142.82万 - 项目类别:
Analysis of Integrated Brain Functions Using Hemogenetic Imaging
使用血遗传学成像分析大脑的综合功能
- 批准号:
10553193 - 财政年份:2022
- 资助金额:
$ 142.82万 - 项目类别:
Multimodal probes for multiscale calcium imaging
用于多尺度钙成像的多模态探针
- 批准号:
10154098 - 财政年份:2021
- 资助金额:
$ 142.82万 - 项目类别:
Hemogenetic imaging technology for circuit-specific analysis of primate brain function
用于灵长类大脑功能电路特异性分析的血遗传学成像技术
- 批准号:
10652546 - 财政年份:2021
- 资助金额:
$ 142.82万 - 项目类别:
Hemogenetic imaging technology for circuit-specific analysis of primate brain function
用于灵长类大脑功能电路特异性分析的血遗传学成像技术
- 批准号:
10271639 - 财政年份:2021
- 资助金额:
$ 142.82万 - 项目类别:
Hemogenetic imaging technology for circuit-specific analysis of primate brain function
用于灵长类大脑功能电路特异性分析的血遗传学成像技术
- 批准号:
10478067 - 财政年份:2021
- 资助金额:
$ 142.82万 - 项目类别:
Toward functional molecular neuroimaging using vasoactive probes in human subjects
在人类受试者中使用血管活性探针进行功能性分子神经成像
- 批准号:
10253338 - 财政年份:2021
- 资助金额:
$ 142.82万 - 项目类别:
Supplement to Neurobiological Engineering Training Program
神经生物工程培训计划的补充
- 批准号:
10836872 - 财政年份:2021
- 资助金额:
$ 142.82万 - 项目类别:
相似国自然基金
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 142.82万 - 项目类别:
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 142.82万 - 项目类别:
Generalized prediction errors in the human cerebellum
人类小脑的广义预测误差
- 批准号:
10715334 - 财政年份:2023
- 资助金额:
$ 142.82万 - 项目类别:
Dissecting the functional organization of local hippocampal circuits underlying spatial representations
剖析空间表征下局部海马回路的功能组织
- 批准号:
10590363 - 财政年份:2023
- 资助金额:
$ 142.82万 - 项目类别: