Simultaneous functional MRI and Micro-Magnetic Nervous System Stimulation
同时进行功能性 MRI 和微磁神经系统刺激
基本信息
- 批准号:10154562
- 负责人:
- 金额:$ 217.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAchievementAction PotentialsAnimalsAreaAxonBasic ScienceBiocompatible MaterialsBrainBrain imagingCalcium ChannelCharacteristicsChargeCommunitiesCorpus CallosumDataDeep Brain StimulationDepositionDevelopmentDimensionsDoseElectric StimulationElectromagneticsElementsFiberFunctional Magnetic Resonance ImagingGeneral HospitalsGlobal ChangeHistologyInferior ColliculusLaboratoriesMagnetic Resonance ImagingMagnetismMassachusettsMeasuresMediatingMicroscopicNervous system structureNeural PathwaysNeuraxisNeuronsNeurosciences ResearchOpticsOutcomePathway interactionsPeripheralPhysiologic pulsePreparationPropertyRattusReactionResearchResistanceRodentScienceSignal TransductionSourceStructureSynapsesSystemTechnologyTestingTimeTissuesTranscranial magnetic stimulationVagus nerve structureanalogawakebiocompatible polymerbiomaterial compatibilitybrain tissueclinical applicationdeep brain stimulation arraydeep brain stimulatordesigndorsal cochlear nucleuselectric fieldflexibilityhemodynamicsimplantationin vivomagnetic fieldneural networkneural stimulationneuronal circuitryneuroregulationneurotransmissionnew technologynext generationnoveloptical fiberoptical imagingoptical sensoroptogeneticsparyleneprospectiverelating to nervous systemresponsethree dimensional structuretoolwhite matter
项目摘要
ABSTRACT
Micromagnetic stimulation (µMS) has several advantages over electrical stimulation. First, µMS does not
require charge-balanced stimulation waveforms as in electrical stimulation. In µMS, neither sinks nor sources
are present when the time-varying magnetic field induces a current. Thus µMS does not suffer from charge
buildup as can occur with electrical stimulation. Second, magnetic stimulation via µMS is capable of activating
neurons with specific axonal orientations. Third, it is contactless, so biocompatible materials such as parylene
will allow implantation with minimal or no reaction. Moreover, as the probes can be insulated entirely from the
brain tissue, we show to significantly reduce the problem of excessive power deposition into the tissue during
magnetic resonance imaging (MRI).
In this application, we propose to design, fabricate, and test microcoil structures for next-generation
Nervous System Stimulation: the micro coils arrays will be designed for cortical stimulation like ECoGs and
deep brain stimulation. The array will be novel in the sense that it will allocate optical fibers to perform onsite
optogenetic calcium channels recording in awake and behaving animals, thus allowing for direct study of the
underlying mechanisms of magnetic stimulation. All the micromagnetic stimulators will also be MRI compatible,
allowing for large scale neural recordings with fMRI. This technology will serve Neuroscience research—
investigating the function of neurons and neural networks in the peripheral and central nervous system (PNS
and CNS)—enhancing or creating new applications for neuromodulation. All of these applications will allow us
to employ neuromodulation and study how micromagnetic field pulses can be used for stimulating or blocking
the flow of Action Potentials (APs) through the nervous system, as similarly transcranial magnetic stimulation
(TMS) produces excitation and inhibition. The proposed µMS tools will also provide the community with a way
to reach a more in-depth understanding of the mechanisms of actions of TMS.
抽象的
微磁刺激 (μMS) 相对于电刺激有几个优点:首先,μMS 没有。
与电刺激一样,需要电荷平衡的刺激波形,既不吸收也不产生源。
当时变磁场感应电流时,μMS 不会受到电荷的影响。
其次,通过 µMS 进行的磁刺激能够激活。
第三,它是非接触式的,因此具有生物相容性材料,例如聚对二甲苯。
此外,由于探针可以与物体完全绝缘,因此可以实现最小反应或无反应的植入。
脑组织,我们证明可以显着减少在过程中过度功率沉积到组织中的问题
磁共振成像(MRI)。
在此应用中,我们建议设计、制造和测试下一代微线圈结构
神经系统刺激:微线圈阵列将设计用于皮层刺激,如 ECoG 和
该阵列将是新颖的,因为它将分配光纤进行现场执行。
光遗传学钙通道记录清醒和行为动物,从而允许直接研究
所有微磁刺激器也将与 MRI 兼容,
允许使用功能磁共振成像进行大规模神经记录,这项技术将服务于神经科学研究——
研究周围和中枢神经系统(PNS)中神经元和神经网络的功能
和中枢神经系统)——增强或创建新的神经调节应用程序所有这些应用程序将使我们能够。
采用神经调节并研究如何使用微磁场脉冲来刺激或阻断
动作电位 (AP) 通过神经系统的流动,与类似的经颅磁刺激一样
(TMS) 产生兴奋和抑制。拟议的 µMS 工具也将为社区提供一种方法。
更深入地了解TMS的作用机制。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical Simulation and Experimental Studies of a Ribbon Coil for Trans Spinal Magnetic Stimulation (TSMS) in Rats.
用于大鼠经脊柱磁刺激 (TSMS) 的带状线圈的数值模拟和实验研究。
- DOI:10.1109/embc40787.2023.10340213
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Colella,Micol;Cid,LidiaGomez;Liberti,Micaela;Apollonio,Francesca;Yu,Xin;Ay,Ilknur;Bonmassar,Giorgio
- 通讯作者:Bonmassar,Giorgio
Focal fMRI signal enhancement with implantable inductively coupled detectors.
使用植入式电感耦合探测器增强聚焦功能磁共振成像信号。
- DOI:10.1016/j.neuroimage.2021.118793
- 发表时间:2022-02-15
- 期刊:
- 影响因子:5.7
- 作者:Chen Y;Wang Q;Choi S;Zeng H;Takahashi K;Qian C;Yu X
- 通讯作者:Yu X
Decoding the brain state-dependent relationship between pupil dynamics and resting state fMRI signal fluctuation.
- DOI:10.7554/elife.68980
- 发表时间:2021-08-31
- 期刊:
- 影响因子:7.7
- 作者:Sobczak F;Pais-Roldán P;Takahashi K;Yu X
- 通讯作者:Yu X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilknur Ay其他文献
Ilknur Ay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilknur Ay', 18)}}的其他基金
Renal hypoxia in the development of glomerular fibrosis
肾小球纤维化发展中的肾脏缺氧
- 批准号:
9925210 - 财政年份:2019
- 资助金额:
$ 217.81万 - 项目类别:
Transcutaneous vagus nerve stimulation in cerebral ischemia
经皮迷走神经刺激治疗脑缺血
- 批准号:
8427730 - 财政年份:2012
- 资助金额:
$ 217.81万 - 项目类别:
Transcutaneous vagus nerve stimulation in cerebral ischemia
经皮迷走神经刺激治疗脑缺血
- 批准号:
8554390 - 财政年份:2012
- 资助金额:
$ 217.81万 - 项目类别:
相似国自然基金
共和盆地东北部地区隆升剥蚀过程对干热岩形成就位的影响:来自低温热年代学的制约
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
朱鹮野生种群营养生态位对繁殖成就的影响及保护对策研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
成就目标视角下建言韧性的形成机制与作用效果研究
- 批准号:72102228
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于目标成就评量的社区中医药健康管理服务评价及优化策略研究
- 批准号:71874047
- 批准年份:2018
- 资助金额:49.0 万元
- 项目类别:面上项目
科研人员流动与职业成就的关系研究
- 批准号:71874049
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Cardiac Sonogenetics: Noninvasive Stimulation of the Heart With Low-Intensity Focused Ultrasound
心脏声遗传学:用低强度聚焦超声对心脏进行无创刺激
- 批准号:
10599091 - 财政年份:2022
- 资助金额:
$ 217.81万 - 项目类别:
Cardiac Sonogenetics: Noninvasive Stimulation of the Heart With Low-Intensity Focused Ultrasound
心脏声遗传学:用低强度聚焦超声对心脏进行无创刺激
- 批准号:
10351918 - 财政年份:2022
- 资助金额:
$ 217.81万 - 项目类别:
Identifying a Role for Vasoactive Intestinal Peptide Expressing Interneurons in a Mouse Model of Dravet Syndrome
鉴定血管活性肠肽表达中间神经元在 Dravet 综合征小鼠模型中的作用
- 批准号:
9907136 - 财政年份:2019
- 资助金额:
$ 217.81万 - 项目类别:
Identifying a Role for Vasoactive Intestinal Peptide Expressing Interneurons in a Mouse Model of Dravet Syndrome
鉴定血管活性肠肽表达中间神经元在 Dravet 综合征小鼠模型中的作用
- 批准号:
10062835 - 财政年份:2019
- 资助金额:
$ 217.81万 - 项目类别:
Fiber-Delivered Programmable Supercontinuum Laser Adaptive to EvolvingNeurophotonic Research
光纤传输的可编程超连续谱激光器适应不断发展的神经光子学研究
- 批准号:
9915977 - 财政年份:2019
- 资助金额:
$ 217.81万 - 项目类别: