Heegaand spliffings and hyperbolic structures of 3-manifolds
Heegaand spliffings 和 3 流形的双曲结构
基本信息
- 批准号:09440033
- 负责人:
- 金额:$ 7.04万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of Heegaard splittings of 3-manifolds has been one of the most important themes in 3-manifold theory, and we already have deep understanding of the Heegaard splittings of "non-hyperbolike" 3-manifolds. However, our understanding of those of hyperbolic manifolds is far from satisfaction. In particular, as far as we know, no relationship between the hyperbolic structures and the Heegaard splittigs had been known.In this project we have proved that the hyperbolic structure of a 2-bridge knot complement is intimately related with its bridge structure, which is a kind of Heegaard splitting. In fact, we have given a concrete construction of the hyperbolic structure of a 2-bridge knot complement by using the 2-bridge structure. To be more precise, we have constructed a continuous family of hyperbolic cone-manifold structures on a 2-bridge knot complement which have singularities along the upper and lower tunnels, where the cone angle varies from 0 to 2π. The cone-manifold structure with cone angle 0 corresponds to a rational boundary group of the quasi-Fuchsian once-punctured torus space and that with cone angle 2π gives the hyperbolic structure of the 2-bridge knot complement. To establish this result, we have given an explicit formulation and a full proof to (a part of) the theory announced by Jorgensen on the quasi-Fuchsian once-punctured torus groups, and generalized the theory to that for the groups outside the quasi-Fuchsian once-punctured space. The computer program "OPTI" developed by Masaaki Wada for this project visualizes Jorgensen's theory and its generalization, and it has been an indispensable tool not only for this project but also for the study of Teichmuller spaces. We hope the result we have obtained in this project is the beginning of the study of the relationship between the hyperbolic structures and the Heegaard splittings of 3-manifolds.
3-流形的Heegaard分裂研究一直是3-流形理论中最重要的主题之一,我们对“非双曲”3-流形的Heegaard分裂已经有了深入的了解,但我们对3-流形的Heegaard分裂的理解还很有限。双曲流形远不能令人满意。特别是,据我们所知,双曲结构和Heegaard splittigs之间的关系尚不清楚。在这个项目中我们已经证明了。 2 桥结补的双曲结构与其桥结构密切相关,这是一种 Heegaard 分裂。事实上,我们已经利用以下公式给出了 2 桥结补的双曲结构的具体构造。更准确地说,我们在 2 桥结补上构建了一系列连续的双曲锥流管结构,该结构沿上隧道和下隧道具有奇点,锥角从 0 到 0 变化。 2π。锥角为 0 的锥流形结构对应于准 Fuchsian 一次穿孔环面空间的有理边界群,锥角为 2π 的锥流形结构给出了 2 桥结补的双曲结构。我们对 Jorgensen 提出的拟 Fuchsian 一次穿孔环面群的理论(部分)给出了明确的表述和充分的证明,并推广了该理论和田正明为这个项目开发的计算机程序“OPTI”将乔根森的理论及其推广可视化,它不仅是这个项目不可或缺的工具,也是整个项目不可或缺的工具。我们希望在这个项目中获得的结果是双曲结构和 Heegaard 分裂之间关系研究的开始。 3-歧管。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
河内明夫: "Floer humology of topological imitations of honeblogy 3-spheces" J.Knot Theary Ramifications. 7(1). 41-60 (1998)
Akio Kawachi:“骨学 3-spheces 的拓扑模仿的Floer humology”J.Knot Theary Ramifications 7(1) (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
和田昌昭: "Parabolic representations of the groups of mutant knots" Journal of Knot Theory and its rainifications. 6(6). 895-905 (1997)
Masaaki Wada:“突变结群的抛物线表示”《结理论及其降雨》杂志 6(6) (1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
E. Kliwenko, M. Sakuma: "Two-generator disuete subgrurfa of Iscne (IHィイD12ィエD1) curfining ouaitatia-seulising elements"Genefonae Dedicata. 72. 247-282 (1998)
E. Kliwenko、M. Sakuma:“Iscne (IH-D12-D1) 限制 ouaitatia-seulising 元素的双发生器 disuete subgrurfa”Genefonae Dedicata。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
L Tu Qu Thang 村上順 大槻和思: "On a universal perturebatiue mvauant cy 3-manifields"Topology. 37. 539-574 (1998)
L Tu Qu Thang Jun Murakami Kazushi Otsuki:“On a universal perturebatiue mvauant cy 3-manifields”拓扑 37. 539-574 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Wada: "A genualizatour of the Schuarziar via cofford numbers"Ann. Acad. Sci. Feun.. 23. 453-460 (1998)
M. Wada:“通过考福德数对 Schuarziar 进行 genualizatour”Ann。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAKUMA Makoto其他文献
SAKUMA Makoto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAKUMA Makoto', 18)}}的其他基金
Heegaard structures and geometric structures of 3-manifolds
Heegaard 结构和 3 流形的几何结构
- 批准号:
18340018 - 财政年份:2006
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Hecguard Splittings and genetic structures of 3-manifolds
Hecguard 分裂和 3 流形的遗传结构
- 批准号:
14340023 - 财政年份:2002
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on hemocompatibility and antithrombotic characeristics of the small caliver vascular prosthesis
小口径人工血管血液相容性及抗血栓特性研究
- 批准号:
05670980 - 财政年份:1993
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Study of anastomotic neointimal hyperplasia after vascular prosthesis implantation. Its mechanism and prevention.
人工血管植入后吻合口新生内膜增生的研究。
- 批准号:
03670575 - 财政年份:1991
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
A Study of Anastomotic Neointimal Hyperplasia After Graft Inplantation.
移植物植入后吻合口新内膜增生的研究。
- 批准号:
01570699 - 财政年份:1989
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
具有部分耗散结构的双曲-抛物系统经典解的适定性
- 批准号:12101263
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多重奇异双曲系统的结构稳定性
- 批准号:
- 批准年份:2020
- 资助金额:51 万元
- 项目类别:面上项目
区间映射的迭代根与嵌入流及相关的函数方程问题
- 批准号:12026207
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
区间映射的迭代根与嵌入流及相关的函数方程问题
- 批准号:12026208
- 批准年份:2020
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
保结构的间断有限元数值方法及在数学建模中的应用
- 批准号:11901339
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
- 批准号:
22KJ2801 - 财政年份:2023
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Structure-Preserving Algorithms for Hyperbolic Balance Laws with Uncertainty
不确定性双曲平衡定律的结构保持算法
- 批准号:
2207207 - 财政年份:2022
- 资助金额:
$ 7.04万 - 项目类别:
Standard Grant
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
RGPIN-2019-05183 - 财政年份:2022
- 资助金额:
$ 7.04万 - 项目类别:
Discovery Grants Program - Individual
Elucidation of new dissipative structure and exploration of general stability analysis method for symmetric hyperbolic system
新耗散结构的阐明及对称双曲系统一般稳定性分析方法的探索
- 批准号:
21K13818 - 财政年份:2021
- 资助金额:
$ 7.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
RGPIN-2019-05183 - 财政年份:2021
- 资助金额:
$ 7.04万 - 项目类别:
Discovery Grants Program - Individual