A study of robustness for testing problem under non-normality for high-dimensional data

高维数据非正态性下检验问题的鲁棒性研究

基本信息

项目摘要

This study is concerned with the statistical testing problem for high-dimensional data. Firstly, we dealt with the problem for testing homogeneity of mean vectors, that is, testing that all mean vectors are equal. Under the condition that the population distribution is multivariate normal, testing criterion was being proposed. Through the simulation study, I confirmed that the precision of the testing criterion gets worth when the population distribution is multivariate t. I proposed other testing statistic under a generalized population distribution which contains multivariate normal. In addition, we proposed a testing criterion for testing multivariate normality for high-dimensional data. Through simulation, we validate that the precisions of the proposals become well as the sample size and the dimension are large.
本研究涉及高维数据的统计检验问题。首先,我们处理均值向量同质性的检验问题,即检验所有均值向量是否相等。在总体分布服从多元正态的条件下,提出了检验准则。通过模拟研究,我证实当总体分布为多元t时,检验标准的精度是有价值的。我提出了包含多元正态分布的广义总体分布下的其他检验统计量。此外,我们提出了一种测试高维数据多元正态性的测试标准。通过仿真,我们验证了建议的精度随着样本量和维度的增大而变得良好。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Testing homogeneity of mean vectors under heteroscedasticity in high-dimension
高维异方差下均值向量同质性检验
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山田隆行;姫野哲人
  • 通讯作者:
    姫野哲人
Test for assessing multivariate normality available for high-dimensional data
用于评估高维数据的多元正态性的测试
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yamada; T.;Himeno; T
  • 通讯作者:
    T
Estimations for some functions of covariance matrix in high dimension under non-normality and its applications
非正态性下高维协方差矩阵某些函数的估计及其应用
  • DOI:
    10.1016/j.jmva.2014.04.020
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Himeno; T.;Yamada; T
  • 通讯作者:
    T
Test for assessing multivariate normality available for high-dimensional data
用于评估高维数据的多元正态性的测试
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takayuki Yamada; Tetsuto Himeno
  • 通讯作者:
    Tetsuto Himeno
Testing homogeneity of mean vectors under heteroscedasticity in high-dimension
高维异方差下均值向量同质性检验
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山田隆行; 姫野哲人
  • 通讯作者:
    姫野哲人
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMADA Takayuki其他文献

Multi-material topology optimization based on symmetric level set function using the material definition with perfect symmetric property
利用完美对称性材料定义的基于对称水平集函数的多材料拓扑优化
  • DOI:
    10.1299/transjsme.20-00412
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NODA Masaki;NOGUCHI Yuki;YAMADA Takayuki
  • 通讯作者:
    YAMADA Takayuki
Topology optimization with geometrical feature constraints based on the partial differential equation system for geometrical features (Overhang constraints considering geometrical singularities in additive manufacturing)
基于几何特征偏微分方程组的几何特征约束拓扑优化(考虑增材制造中几何奇点的悬垂约束)
  • DOI:
    10.1299/transjsme.19-00129
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    YAMADA Takayuki;MASAMUNE Jun;TERAMOTO Hiroshi;HASEBE Takahiro;KURODA Hirotoshi
  • 通讯作者:
    KURODA Hirotoshi
Topology Optimization of an Internal Compliant Mechanism of Morphing Flap with Finite Deformation
有限变形变形皮瓣内柔机构的拓扑优化
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    KAMBAYASHI Keita;KOGISO Nozomu;WATANABE Ikumu;YAMADA Takayuki
  • 通讯作者:
    YAMADA Takayuki
Topology optimization with geometrical feature constraints based on the partial differential equation system for geometrical features (Overhang constraints considering geometrical singularities in additive manufacturing)
基于几何特征偏微分方程组的几何特征约束拓扑优化(考虑增材制造中几何奇点的悬垂约束)
  • DOI:
    10.1299/transjsme.19-00129
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    YAMADA Takayuki;MASAMUNE Jun;TERAMOTO Hiroshi;HASEBE Takahiro;KURODA Hirotoshi
  • 通讯作者:
    KURODA Hirotoshi
Multi-material topology optimization based on symmetric level set function using the material definition with perfect symmetric property
利用完美对称性材料定义的基于对称水平集函数的多材料拓扑优化
  • DOI:
    10.1299/transjsme.20-00412
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NODA Masaki;NOGUCHI Yuki;YAMADA Takayuki
  • 通讯作者:
    YAMADA Takayuki

YAMADA Takayuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMADA Takayuki', 18)}}的其他基金

Multivariate statistical inference for high-dimensional data and its application
高维数据的多元统计推断及其应用
  • 批准号:
    26800088
  • 财政年份:
    2014
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Optimum design method for a new smart power generation system utilizing its flexibility
利用其灵活性的新型智能发电系统的优化设计方法
  • 批准号:
    24760119
  • 财政年份:
    2012
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The evaluation of the response to neoadjuvant chemotherapy and lesion extension of the local advanced breast cancer using MRI
MRI评价局部晚期乳腺癌新辅助化疗疗效及病灶扩展
  • 批准号:
    19591397
  • 财政年份:
    2007
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Sparse contingency table analysis and its application
稀疏列联表分析及其应用
  • 批准号:
    20K03756
  • 财政年份:
    2020
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical development on statistical inference for local complex structure of temporal and spatial data
时空数据局部复杂结构统计推断的理论发展
  • 批准号:
    20K11719
  • 财政年份:
    2020
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory of high-dimensional martingales and its statistical applications
高维鞅理论及其统计应用
  • 批准号:
    18K11203
  • 财政年份:
    2018
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
大規模・高次元データを用いた計量経済分析における統計的推測法の開発
使用大规模、高维数据开发计量经济分析中的统计推断方法
  • 批准号:
    18K01541
  • 财政年份:
    2018
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multivariate statistical inference for high-dimensional data and its application
高维数据的多元统计推断及其应用
  • 批准号:
    26800088
  • 财政年份:
    2014
  • 资助金额:
    $ 1.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了