安定交換子長を用いた結び目, 及び絡み目の研究
使用稳定换向器长度的结和连杆研究
基本信息
- 批准号:12J01252
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2012
- 资助国家:日本
- 起止时间:2012-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
前年度、研究で進展のあったゴールドマンリー代数に関する研究の続きを行った。今年度は安定交換子長に関する研究に進展がなかった。以下では、もう一つ研究対象としてあげていた、ゴールドマンリー代数に関する研究の進展に関して記述する。まず、境界に有限個の点を持つ曲面(以下では点付き境界を持つ曲面という)に対して、ゴールドマンリー代数の拡張となるポアソン代数を定義した。このポアソン括弧積は向き付けられた点付き境界上の閉曲線や端点を点に持つ曲線の正則ホモトピー類に対して定義される。さらに、Turaev 余リー代数の拡張となる余ポアソン代数も定義した。この新たに定義したポアソン代数の括弧積は、点付き境界を持つ円板に対して Labourie により定義された swapping 括弧積を呼ばれるものの一般の曲面への拡張になっている。次に、点付き境界を持つ曲面上の向きを持たない曲線に関してもポアソン括弧積を定義した。このポアソン代数を曲面上の絡み目に対して定義されるスケイン関係式に対応する関係式で割ることで得られる、商ポアソン代数の量子化を考えた。この量子化は Roger と Yang による点付き曲面のゴールドマンリー代数の量子化を参考にして構成した。このポアソン代数の量子化は Muller により定義された、点付き境界を持つ曲面のスケイン代数と一致していることがわかった。さらに Muller により、点付き境界を持つ曲面のスケイン代数のある局所化は、その曲面の三角形分割から得られる量子クラスター代数とある条件のもとで一致することがわかっている。今回の研究で、クラスター代数とゴールドマンリー代数が量子化を通して関係することがわかった。
我们继续对去年取得进展的戈德曼利代数的研究。今年稳定换向器长度的研究没有进展。下面我将介绍另一个研究课题戈德曼利代数的研究进展。首先,我们为边界上有有限个点的曲面(以下简称点边界曲面)定义泊松代数,它是戈德曼利代数的扩展。该泊松括号积是针对定向点边界上的闭合曲线和具有端点的曲线的正则同伦类而定义的。此外,我们定义了协泊松代数,它是图拉耶夫协李代数的扩展。这个新定义的泊松代数括号积是 Labourie 为具有点边界到一般曲面的圆盘定义的所谓交换括号积的扩展。接下来,我们还为具有点边界的曲面上的无向曲线定义了泊松括号积。我们考虑了商泊松代数的量化,它是通过将此泊松代数除以与为表面上的连接定义的绞丝关系相对应的关系表达式而获得的。该量化是参考 Roger 和 Yang 对点状表面的 Goldmanley 代数的量化构建的。结果发现,该泊松代数的量化与 Muller 定义的点边界曲面的 Skene 代数一致。此外,Muller 发现具有点状边界的表面的 Skein 代数的某些局域性与在一定条件下对该表面进行三角测量得到的量子簇代数相一致。在这项研究中,我们发现簇代数和戈德曼利代数通过量化相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
湯淺 亘其他文献
湯淺 亘的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('湯淺 亘', 18)}}的其他基金
Study on quantum invariants via graphical calculus and its applications
基于图解的量子不变量研究及其应用
- 批准号:
19J00252 - 财政年份:2019
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Calculations of representation categories of quantum groups by linear skein theory and its applications to quantum topology
线性绞丝理论计算量子群表示范畴及其在量子拓扑中的应用
- 批准号:
19K14528 - 财政年份:2019
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
相似海外基金
New development of complex analysis in several variables using moduli and closings of an open Riemann surface
使用开放黎曼曲面的模数和闭包进行多变量复分析的新发展
- 批准号:
23K03140 - 财政年份:2023
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
- 批准号:
23K03138 - 财政年份:2023
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on holomorphic mappings of Riemann surfaces --- Geometry of spaces of continuations of Riemann surfaces and applications
黎曼曲面全纯映射研究——黎曼曲面延拓空间的几何及应用
- 批准号:
22K03356 - 财政年份:2022
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
離散リーマン面の離散擬等角変形理論の基礎づけ
离散黎曼曲面离散拟共形变形理论基础
- 批准号:
22K18672 - 财政年份:2022
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Multidisciplinary research on diffusion processes on various network models and their applications
各种网络模型扩散过程的多学科研究及其应用
- 批准号:
21K11763 - 财政年份:2021
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)