Topology and geometry of torus actions and combinatorics

环面作用和组合的拓扑和几何

基本信息

  • 批准号:
    22K03292
  • 负责人:
  • 金额:
    $ 2.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

佐藤敬志氏と Stanley-Stembridge予想の解決を目指して regular semisimple Hessenberg varietyのコホモロジー環の具体的記述とそれ状の対称群作用を調べた.主な結果は次の3つである.(1) コホモロジー環が次数2の元で生成される regular semisimple Hessenberg variety は double lollipop型と呼ばれるものであることを示した(論文投稿中).(2) 上記(1)の場合にコホモロジー環の具体的な表示を与え,対称群の表現を具体的に見た.コホモロジー環の具体的表示はやや複雑であるが,一般的な場合への足がかりとなると期待している.なお系として,double lollipop の場合には Stanley-Stembridge予想が肯定的であることが分かる(論文準備中).組合せ論の観点から,double lollipop の場合には予想が肯定的であることが分かっているが,我々のアプローチは,Brosnan-Chowの定理(Shareshian-Wachs予想の解決)を通した幾何的なものであるので,意義があると思う.(3) Ayzenberg-Buchstaber は regular semisimple Hessenberg variety の twin を定義したが,そのコホモロジーが本質的にLLT多項式であることを見出した(IMRNから出版予定).このような関係があるのは薄々感じていたことではあるが,きちんとした証明を与えることができたのは意義あることと思う.
以佐藤隆为目标,以解决Stanley-Stembridge猜想为目标,研究了正则半单Hessenberg簇上同调环的具体描述及其对称群作用。主要结果有以下三个: (1) 我们证明了由2阶元素生成上同调环的正则半单Hessenberg簇称为双棒棒糖型(论文正在提交)。 (2) 在上面的情况(1)中,我们给出了上同调环的具体表示,并具体研究了对称群的表示。尽管上同调环的具体表示有些复杂,但我们希望它能够作为一般情况的垫脚石。作为推论,我们发现斯坦利-斯坦布里奇猜想在双棒棒糖的情况下是正的(论文正在准备中)。从组合的角度来看,我们知道该猜想在双棒棒糖的情况下是正的,但我们的方法是基于通过 Brosnan-Chow 定理(解决 Shareshian-Wachs 猜想)的几何猜想,因此,我认为它是正确的。是重要的。 (3) Ayzenberg-Buchstaber 定义了正则半单 Hessenberg 簇的孪生体,但发现其上同调本质上是一个 LLT 多项式(将由 IMRN 发布)。虽然我隐隐约约地感觉到这种关系的存在,但我认为我们能够提供确凿的证据是很重要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Higher School of Economics(ロシア連邦)
高等经济学院(俄罗斯联邦)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
The second cohomology of regular semisimple Hessenberg varieties from GKM theory
GKM 理论中正则半单 Hessenberg 簇的第二上同调
Toric Richardson varieties of Catalan type and Wedderburn--Etherington numbers
加泰罗尼亚型和韦德伯恩-埃瑟林顿数的 Toric Richardson 变体
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Eunjeong Lee;Mikiya Masuda;and Seonjeong Park
  • 通讯作者:
    and Seonjeong Park
Unicellular LLT polynomials and twins of regular semisimple Hessenberg varieties
单细胞 LLT 多项式和正则半单 Hessenberg 簇的孪生
  • DOI:
    10.1093/imrn/rnac359
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anton Ayzenberg;Mikiya Masuda;and Takashi Sato;Mikiya Masuda and Takashi Sato
  • 通讯作者:
    Mikiya Masuda and Takashi Sato
Chungbuk National University/Jeonju University(韓国)
忠北大学/全州大学(韩国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

枡田 幹也其他文献

枡田 幹也的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('枡田 幹也', 18)}}的其他基金

Moment-angle 複体のトポロジーと凸多面体の組合せ論
复形的矩角拓扑和凸多面体的组合
  • 批准号:
    13F03015
  • 财政年份:
    2013
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
トーリックトポロジーにおける幾何と組合せ論
环面拓扑中的几何和组合数学
  • 批准号:
    10F00018
  • 财政年份:
    2010
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
トーリックトポロジーと組合せ論
环面拓扑和组合数学
  • 批准号:
    09F09023
  • 财政年份:
    2009
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
変換群の幾何学と組合せ論
变换群的几何和组合
  • 批准号:
    02F02299
  • 财政年份:
    2002
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
変換群の幾何学と組合せ論
变换群的几何和组合
  • 批准号:
    02F00299
  • 财政年份:
    2002
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
変換群の幾何学
变换群的几何
  • 批准号:
    08640133
  • 财政年份:
    1996
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
変換群の幾何学
变换群的几何
  • 批准号:
    06640166
  • 财政年份:
    1994
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
変換群の幾何学
变换群的几何
  • 批准号:
    03740055
  • 财政年份:
    1991
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
変換群の幾何学
变换群的几何
  • 批准号:
    61740056
  • 财政年份:
    1986
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
多様体上の変換群の研究
流形上变换群的研究
  • 批准号:
    59740016
  • 财政年份:
    1984
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

擬アノソフ周期軌道の複雑度に基づく組みひも群と写像類群の研究
基于伪阿诺索夫周期轨道复杂性的辫状群和映射类群研究
  • 批准号:
    21K03247
  • 财政年份:
    2021
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
GKM理論におけるトポロジー,代数幾何,表現論
GKM 理论中的拓扑、代数几何和表示论
  • 批准号:
    19K14537
  • 财政年份:
    2019
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometry and topology of torus actions and combinatorics
环面作用和组合的几何和拓扑
  • 批准号:
    19K03472
  • 财政年份:
    2019
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of toric topology
环面拓扑的发展
  • 批准号:
    16K05152
  • 财政年份:
    2016
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Morse理論の様々な応用に関する研究
莫尔斯理论的各种应用研究
  • 批准号:
    14J07057
  • 财政年份:
    2014
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了