Study on Diffeomorphism Groups preserving a Geometric Structure
保持几何结构的微分同胚群的研究
基本信息
- 批准号:23540111
- 负责人:
- 金额:$ 3.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2011
- 资助国家:日本
- 起止时间:2011 至 2013
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In order to clarify geometric structures on a manifold, I studied the algebraic structure of the diffeomorphism group preserving a geometric structure. As results, I got (1) characterization of the simplicity of the leaf preserving diffeomorphism group for foliated manifolds, (2) consideration of commutator length for leaf preserving diffeomorphisms, especially characterization of the uniform perfectness of the groups for 1 dimensional foliations on the 2-torus and (3) for manifold pair (M,N), characterization of the uniform perfectness of the diffeomorphism group D(M,N) preserving N.
为了阐明歧管上的几何结构,我研究了保存几何结构的差异组的代数结构。结果,我得到了(1)表征叶子歧管的叶片保存差异群的简单性,(2)考虑保留叶片的换向剂长度,以保留叶片保存的差异性,尤其是对2托群的1二维叶子组的均匀表征,并在2托和(3)组中(3)组的歧义(3)差异(3)组合(m,n),m,n),m,n),m,n),m,n)的特征。 d(m,n)保存n。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Erratum and addendum to “Commutators of C∞-diffeomorphisms preserving a submanifold”
“保留子流形的 C∞-微分同胚的交换子”的勘误和附录
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:M. Cencelj;K. Eda;and A. Vavpetic;Makoto Ozawa;與倉昭治;Chie Nara;Y. Mitsumatsu;K. Eda and V. Matijevic;Makiko Sumi Tanaka and Hiroyuki Tasaki;Kojun ABE and Kazuhko FUKUI
- 通讯作者:Kojun ABE and Kazuhko FUKUI
The necessary and sufficient condition for the group of leaf preserving diffeomorphisms to be simple
叶保持微分同态群简单的充要条件
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Ed. H. Hironaka;T. Akahori;G. Komatsu;K. Miyajima;M. Namba;D. H. Phong;K. Yamaguchi;Y. Mitsumatsu;P. Quast and M. S. Tanaka;Kazuto Takao;K. Eda;福井和彦
- 通讯作者:福井和彦
Uniform perfectness of diffeomorphism groups and its applications
微分同胚群的一致完备性及其应用
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:阿部孝順;福井和彦
- 通讯作者:福井和彦
On the uniform perfectness of diffeomorphism groups preserving a submanifold
关于保留子流形的微分同胚群的一致完备性
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:阿部孝順;福井和彦
- 通讯作者:福井和彦
共 9 条
- 1
- 2
FUKUI Kazuhiko的其他基金
Study on Diffeomorphism Groups of Manifolds with Geometric Structures
几何结构流形微分同胚群的研究
- 批准号:1754009817540098
- 财政年份:2005
- 资助金额:$ 3.24万$ 3.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Study on Homeomorphism Group
同胚群研究
- 批准号:1454009314540093
- 财政年份:2002
- 资助金额:$ 3.24万$ 3.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Topological study on the structure of the group of homeomorphisms
同胚群结构的拓扑研究
- 批准号:1264009412640094
- 财政年份:2000
- 资助金额:$ 3.24万$ 3.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
相似海外基金
幾何的グラフに対する順序構造を考慮した共通部分グラフ抽出アルゴリズム
考虑有序结构的几何图常用子图提取算法
- 批准号:24K1482724K14827
- 财政年份:2024
- 资助金额:$ 3.24万$ 3.24万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
演算子代数と時空の幾何から探る量子重力の構造
从算子代数和时空几何探索量子引力的结构
- 批准号:24K1704824K17048
- 财政年份:2024
- 资助金额:$ 3.24万$ 3.24万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
電子相関と幾何学構造が創発する新規量子相および非線形外場応答の理論
电子关联和几何结构产生的新型量子相和非线性外场响应理论
- 批准号:24K0056824K00568
- 财政年份:2024
- 资助金额:$ 3.24万$ 3.24万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
量子力学的システムの統計的性質に内在する情報幾何構造の総合的研究
量子力学系统统计特性固有的信息几何的综合研究
- 批准号:23K2578723K25787
- 财政年份:2024
- 资助金额:$ 3.24万$ 3.24万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
佐々木多様体上のHiggs束の展開と関連する幾何構造
佐佐木流形上希格斯丛的展开及相关几何结构
- 批准号:24K0052424K00524
- 财政年份:2024
- 资助金额:$ 3.24万$ 3.24万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)