A study for scalable representation of 3D object models and its applications based on information sensitivity

基于信息敏感性的3D物体模型可扩展表示及其应用研究

基本信息

  • 批准号:
    17300033
  • 负责人:
  • 金额:
    $ 10.21万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

In this project, we propose a new method for 3D object model representation and its applications based on a concept of objective sensitivity to a 3D shape, which can deal with multi-view and multi-resolution range data, stereo images, texture images and videos. The objective sensitivity means how much information about the object can be obtained, when its 3D shape is presented in a certain level of detail. The work contains the following sub-goals : The first one is to integrate range data measured in different resolutions and from different view points by considering two certainties for each measured point, and then to generate a 3D shape model in a certain resolution level by using mesh adaptations like subdivision and decimation techniques. Some experimental results have proved that the goal has been achieved.The second goal is to propose a statistical texture analysis method that can extract some 3D scale factor from a natural image taken in an outdoor scene, where it is not so eas … More y to perform 3D measurement without using an expensive tool such as a laser range finder. The method is based on a hierarchical linear discriminant analysis that can classify some features calculated from higher-order local auto-correlation functions. It has been proved that the method is available for extracting 3D scale factor from texture images. We have also constructed an active stereo vision system that can control panning, tilting and zooming of the camera as an intelligent vision system of a robot. This system can gather some available information of a scene in the local system without any request from outside.The third goal is to develop a new cross-parameterization technique between 3D mesh models that can be used in various 3 dimensional Digital Geometry Processings (DGP). The cross-parameterization method proposed is based on a least-square mesh technique and a self-organizing deformable model(SDM) developed by the authors. This technique has enabled us to transfer texture and motion attributes of a 3D model to another one directly, or to generate intermediate models between two 3D mesh models. As a special application of the 3D morphing that presents these intermediate models temporally, we did several psychological experiments where subjects answer their results when they recognize what an intermediate shape presented is. These experiments have shown that their cognitive processes depend on the combination of the source and target object models.Finally, as other applications of the proposed method, we have developed a facial enhancement system based on the SDM, a 3D motion synthesis system based on a machine learning and a clustering algorithm, and a 3D video reconstruction system based on a factorization method. Less
在这个项目中,我们基于对 3D 形状的客观敏感性的概念,提出了一种新的 3D 对象模型表示及其应用方法,可以处理多视图和多分辨率范围数据、立体图像、纹理图像和视频客观灵敏度意味着当物体的 3D 形状以一定的细节程度呈现时,可以获得多少关于物体的信息。这项工作包含以下子目标:第一个目标是整合以不同分辨率测量的距离数据。考虑两个不同的观点确定每个测量点的确定性,然后通过使用网格自适应(例如细分和抽取技术)生成特定分辨率级别的 3D 形状模型。一些实验结果证明已经实现了目标。第二个目标是提出统计纹理。一种分析方法,可以从户外场景中拍摄的自然图像中提取一些 3D 比例因子,而在户外场景中,如果不使用激光测距仪等昂贵的工具来执行 3D 测量,则该方法基于分层线性判别分析可以对从高阶局部自相关函数计算出的一些特征进行分类,已经证明该方法可用于从纹理图像中提取3D比例因子,我们还构建了一个可以控制平移的主动立体视觉系统。相机的倾斜和变焦作为机器人的智能视觉系统,该系统可以在本地系统中收集场景的一些可用信息,而无需任何外部请求。第三个目标是开发一种新的3D网格之间的交叉参数化技术。模型可以可用于各种 3 维数字几何处理(DGP)。提出的交叉参数化方法基于作者开发的最小二乘网格技术和自组织变形模型(SDM)。直接将一个 3D 模型的纹理和运动属性转换为另一个模型,或者在两个 3D 网格模型之间生成中间模型,作为暂时呈现这些中间模型的 3D 变形的一种特殊应用,我们做了几个心理实验,让受试者回答。当他们识别出中间形状是什么时,他们的结果表明,他们的认知过程取决于源对象模型和目标对象模型的组合。最后,作为所提出方法的其他应用,我们开发了一种基于面部增强的系统。在SDM上,基于机器学习和聚类算法的3D运动合成系统,以及基于Less分解方法的3D视频重建系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
自己組織化モデル:目標曲面への三次元物体メッシュモデルの写像
自组织模型:将 3D 对象网格模型映射到目标表面
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    諸岡健一; 松井瞬; 長橋宏
  • 通讯作者:
    長橋宏
Self-Organizing Deformable Model : A Method for Projecting Mesh Model of 3D Object onto Target Surface
自组织变形模型:一种将3D物体的网格模型投影到目标表面的方法
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ken'ichi; Morooka; Shun; Matsui; Hiroshi; Nagahashi
  • 通讯作者:
    Nagahashi
Scale Invariant Texture Analysis Using Multi-scale Local Autocorrelation Features
使用多尺度局部自相关特征的尺度不变纹理分析
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yousun; Kang; Ken'ichi; Morooka; Hiroshi; Nagahashi
  • 通讯作者:
    Nagahashi
動作特徴を考慮したモーションキャプチャデータベース構築・応用に関する研究
考虑运动特征的动作捕捉数据库构建及应用研究
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤浩司; 青木工太;長橋宏
  • 通讯作者:
    長橋宏
カメラ画像による室内空間の三次元モデル化に関する研究
基于摄像机图像的室内空间三维建模研究
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    麻島修一; 長橋宏; 青木工太
  • 通讯作者:
    青木工太
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGAHASHI Hiroshi其他文献

NAGAHASHI Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAGAHASHI Hiroshi', 18)}}的其他基金

A new mechanism for motion generation and control of virtual agent with 3D non-rigid shape
3D非刚性形状虚拟代理运动生成与控制的新机制
  • 批准号:
    24300035
  • 财政年份:
    2012
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Acquisition of Depth Information form Motion Images Taken in Natural Scene and Their Synthesis.
从自然场景中拍摄的运动图像获取深度信息及其合成。
  • 批准号:
    09650402
  • 财政年份:
    1997
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Knowledge Representation about Images Based on Linguisitical and Numerical Concepts
基于语言和数值概念的图像知识表示
  • 批准号:
    03650295
  • 财政年份:
    1991
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Knowledge Representation about Images in a Natural Language and its Use.
自然语言图像的知识表示及其使用。
  • 批准号:
    01580019
  • 财政年份:
    1989
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Early representation of 3D volumetric shape in visual object processing
视觉对象处理中 3D 体积形状的早期表示
  • 批准号:
    10412966
  • 财政年份:
    2018
  • 资助金额:
    $ 10.21万
  • 项目类别:
Unified Object and Image Representation in 3D Frequency Domain
3D 频域中的统一对象和图像表示
  • 批准号:
    9876904
  • 财政年份:
    1999
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了