String field theory and D-brane
弦场论和D-膜
基本信息
- 批准号:16540232
- 负责人:
- 金额:$ 2.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied string field theory and the subcritical quantum gravity which is described by the matrix quantum mechanics. In particular, we focused on the open string sector where the D-brane plays the fundamental role. Matrix quantum mechanics is defined by the quantum mechanical system where matrix is used as the dynamical degree of freedom. So far, people have studied their closed string sector. These degree of freedom is known to be reduced to the free fermion and extensive study was possible for them. On the other hand, the open string which is related the D-brane is described by so called non-singlet sector. The system is then governed by the Calogero system with interactions. Because of this interaction, the analysis of the system becomes far more difficult and there have not been many studies. In order to treat this issue, in this study, we focused on the infinite set of conserved charges and succeeded to construct the states which diagonalize all the charges. In this way, we clarified the solvability of the open string sector which has not been so clear. We also studied M(embrane) theory in the 3 form flux background. This is a generalization of the string motion in the presence of two form flux. So far, this problem has been studied so called Nambu bracket. In this study, we have studied the motion of point like particle, which will spread when it moves in the flux. From this observation, we could define the vertex which describe the interaction of the particle. We also studied UV/IR mixing which was studied extensively in the noncommutative space to our background.
我们研究了弦场论和矩阵量子力学描述的亚临界量子引力。我们特别关注 D 膜发挥基础作用的开弦部分。矩阵量子力学是由以矩阵作为动态自由度的量子力学系统定义的。到目前为止,人们已经研究了它们的封闭弦扇区。已知这些自由度可简化为自由费米子,并且可以对它们进行广泛的研究。另一方面,与D-膜相关的开弦由所谓的非单线扇区描述。然后,该系统由具有交互作用的 Calogero 系统控制。由于这种相互作用,系统的分析变得更加困难,并且研究也并不多。为了解决这个问题,在本研究中,我们关注无限的守恒电荷集,并成功构造了使所有电荷对角化的状态。通过这种方式,我们澄清了一直不太明确的开弦扇区的可解性。我们还研究了3种形式通量背景下的M(膜)理论。这是存在两种形式通量时弦运动的概括。到目前为止,这个问题已经被研究出来,被称为南部支架。在这项研究中,我们研究了点状粒子的运动,当它在通量中运动时会扩散。根据这一观察,我们可以定义描述粒子相互作用的顶点。我们还研究了紫外/红外混合,这在我们的背景下的非交换空间中得到了广泛的研究。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boundary states in open string channel and CFT near corner
开弦通道和近角 CFT 中的边界态
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Y. Imamura; H. Isono; Y. Matsuo
- 通讯作者:Y. Matsuo
Cardy states as idempotents of fusion ring in string field theory
卡迪状态作为弦场论中融合环的幂等
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Isao Kishimoto; Yutaka Matsuo
- 通讯作者:Yutaka Matsuo
A Toy model of open membrane field theory in constant 3-form flux
恒定三态通量下开放膜场理论的玩具模型
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Pei
- 通讯作者:Pei
Scattering of long folded strings and mixed correlators in the two-matrix model
二矩阵模型中长折叠弦和混合相关器的散射
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:J.
- 通讯作者:J.
Scattering of long folded strings and mixed correlators in the two-matrix model
二矩阵模型中长折叠弦和混合相关器的散射
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:J.
- 通讯作者:J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUO Yutaka其他文献
MATSUO Yutaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUO Yutaka', 18)}}的其他基金
Analysis of D-brane and Black hole by nonperturbative formulation of string theory
用弦理论的非微扰公式分析 D 膜和黑洞
- 批准号:
20540253 - 财政年份:2008
- 资助金额:
$ 2.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of String Theory and Its Nonperturbative Effect
弦论几何及其非微扰效应
- 批准号:
13640267 - 财政年份:2001
- 资助金额:
$ 2.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Soliton dynamics and dualities in superstring theory
超弦理论中的孤子动力学和对偶性
- 批准号:
09640352 - 财政年份:1997
- 资助金额:
$ 2.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)