Various Problems on the Classification in Higher Dimensional Birational Geometry
高维双有理几何分类中的各种问题
基本信息
- 批准号:16340004
- 负责人:
- 金额:$ 5.89万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mori, jointly with Prokhorov, proved Iskovskikh's conjecture on the singular points of the base surface of a 3-dimensional terminal Q-conic bundle, and classified the fibers over the points. Mukai explicitly described the K3 surfaces with primitive polarization of degree 24, and proved the unirationality of the moduli and universal family. Namikawa explicitly described the equivalence of the derived categories of coherent sheaves for Mukai flops. He also moved the equivalence of deformation smoothability and existence of a crepent resolution for projective complex symplectic varieties. Nakayama published the numerical study on divisors of algebraic varieties. Jointly with Fujimoto, he determined the structure of a nonsingular projective 3-fold with non-negaive Kodaira dimension and with a surjective self morphism of degree >1. Kawakita published the classification of 3-dimensional divisorial contractions contracting a divisor to a non-Gorenstein point. He proved the inverse adjunction … More for log canonicity. Oguiso, jointly with Hosono, Lian and Yau, gave an explicit formula for the number of the Fourier Mukai pairs for a complex projective K3 surface. He else determined the maximal finite solvable group acting on some complex K3 surface. Takagi classified the primary singular Fano threefolds with only quotient terminal singularities satisfying General Elephant Conjecture on anti-canonical systems. Saito, jointly with Budur and Mustata, gave a combinatorial formula on the b-function of a principal ideal, defined the b-function for an arbitrary ideal, and proved its relation with multiplier ideals. Abe studied how the moduli of vector bundles with fixed determinant bundle degenerates when the base curve degenerates to a nodal curve. Hayakawa revised and proved Reid's conjecture on the existence of an economical blowup of a 3-dimensional terminal singularity. The overseas cooperative researcher Matsuki successfully revised the invariant and bipassed the termination conjecture in his project with Kawanoue toward desingularization in positive characteristics. Less
Mori 与 Prokhorov 共同证明了 Iskovskikh 关于 3 维终端 Q 圆锥束基面奇点的猜想,并在这些点上对纤维进行了分类,明确描述了具有 24 度原始偏振的 K3 表面,并且证明了模数和万有族的非理性,并明确地描述了 Mukai flop 的相干滑轮的派生范畴的等价性。射影复辛簇的变形平滑性和渐近解的存在性 Nakayama 与 Fujimoto 联合发表了关于代数簇除数的数值研究,确定了具有非负 Kodaira 维数和满射的非奇射影 3 重结构。 Kawakita 发表了将除数收缩为非 Gorenstein 的 3 维除数收缩的分类。他与 Hosono、Lian 和 Yau 一起证明了对数正则性的逆附加,给出了复射影 K3 曲面的傅里叶 Mukai 对数的显式公式。他还确定了最大有限可解群。作用于一些复杂的 K3 表面上,高木将初奇异性 Fano 分类为三重,只有商终端奇异性满足反正则系统上的一般大象猜想。 Saito 与 Budur 和 Mustata 一起给出了主理想 b 函数的组合公式,定义了任意理想的 b 函数,并证明了它与乘子理想的关系,Abe 研究了固定向量丛的模。当基曲线退化为节点曲线时,行列束退化,修正并证明了 Reid 关于 3 维终端奇点经济爆炸的存在性的猜想。研究员 Matsuki 在他与 Kawanoue 合作的项目中成功修正了不变量并双关了终止猜想,以实现积极特征的去奇异化。
项目成果
期刊论文数量(277)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complex projective manifolds which admit non-isomorphic surjective endomorphisms (Higher Dimensional Algebraic Varieties and Vector Bundles)
允许非同构满射自同态的复射影流形(高维代数簇和向量丛)
- DOI:
- 发表时间:2008-09-01
- 期刊:
- 影响因子:0
- 作者:Yoshio Fujimoto;N. Nakayama
- 通讯作者:N. Nakayama
Geometric realization of T-shaped root systems and Jacobians of del Pezzo surfaces
T 形根系和 del Pezzo 曲面雅可比行列式的几何实现
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:向井茂
- 通讯作者:向井茂
On the variety of power sums of the Scorza quartics of trigonal curves
三角曲线的斯科尔扎四次幂和的变化
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:高木寛通
- 通讯作者:高木寛通
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORI Shigefumi其他文献
MORI Shigefumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORI Shigefumi', 18)}}的其他基金
Various problems related to the classification in higher dimensional birational geometry
与高维双有理几何分类相关的各种问题
- 批准号:
20340005 - 财政年份:2008
- 资助金额:
$ 5.89万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Higher Dimensional Algebraic Varieties
高维代数簇
- 批准号:
04044081 - 财政年份:1992
- 资助金额:
$ 5.89万 - 项目类别:
Grant-in-Aid for international Scientific Research
相似国自然基金
K3曲面及其相关问题的研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
K3曲面的自同构和Salem数
- 批准号:11701413
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
算术Riemann-Roch定理之应用
- 批准号:11301352
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
複素曲面上の力学系の構成と大域解析
复杂表面动力系统的构建和全局分析
- 批准号:
23K03148 - 财政年份:2023
- 资助金额:
$ 5.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
対称性を持つK3曲面と有理曲面の研究
K3曲面和对称有理曲面的研究
- 批准号:
23K03036 - 财政年份:2023
- 资助金额:
$ 5.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The study of algebraic varieties related to Calabi-Yau varieties in positive characteristic
与Calabi-Yau簇相关的正特征代数簇研究
- 批准号:
23K03066 - 财政年份:2023
- 资助金额:
$ 5.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of Mirror Symmetry
镜面对称的几何
- 批准号:
22K03296 - 财政年份:2022
- 资助金额:
$ 5.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)