Research for low-dimensional manifolds with various geometric structures

各种几何结构的低维流形研究

基本信息

  • 批准号:
    14540076
  • 负责人:
  • 金额:
    $ 1.73万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

Ue studied the constraints on the diffeomorphism types of 3, 4-manifolds by certain invariants originated from Seiberg-Witten theory. The contribution of the index of the Dirac operator to the isolated singularities of V 4-manifolds previously studied by him is an integer valued invariant for the pair of a spherical 3-manifold and its spin structure, which gives an integral lift of the Rochlin invariant (determined modulo 16), which coincides with the Neumann-Siebenmann invariant. He considered the case when a certain spherical 3-manifold is obtained by surgery on a knot and gave some constraints on its type in terms of the above invariant and also gave certain relations between the invariants of the spherical 3-manifolds in the case that they are obtained by simultanious surgery on a common knot. He also extended the results to the case of general Seifert 3-manifolds and gave some constraints of them to be obtained by surgery on a knot in terms of the Neumann-Siebenmann invariants. Recently some constraints for the Seifert 3-manifolds to be obtained by surgery on a knot are given by Ozsvath-Szabo's Floer homology. So our next task is to investigate the relations between the Floer homology and the above invariants. Fujii suceeded the study of the local transfromations of 3-dimension hyperbolic cone manifolds in terms of Gaussian hypergeometric functions. Imanishi suceeded the study of the cohomology of the the group of Lipschitz homeomorphisms preserving the differentiable foliations of codimension 1 by utilizing several results about the group of Lipschitz homeomorphisms of the interval.
Ue研究了源于Seiberg-Witten理论的某些不变量对3、4流形微分同胚类型的约束。狄拉克算子的指数对他之前研究的 V 4-流形的孤立奇点的贡献是球形 3-流形及其自旋结构对的整数值不变量,它给出了 Rochlin 不变量的积分升力(以模 16 确定),这与 Neumann-Siebenmann 不变量一致。他考虑了通过对结进行手术获得某个球形 3-流形的情况,并根据上述不变量对其类型给出了一些约束,并且还给出了在以下情况下球形 3-流形的不变量之间的某些关系:是通过在普通结上同时进行手术获得的。他还将结果扩展到一般 Seifert 3 流形的情况,并根据 Neumann-Siebenmann 不变量给出了通过对结进行手术获得的一些约束。最近,Ozsvath-Szabo 的 Floer 同调给出了通过结手术获得 Seifert 3 流形的一些约束。所以我们的下一个任务是研究Floer同源性与上述不变量之间的关系。 Fujii 继续用高斯超几何函数研究三维双曲锥流形的局部变换。今西利用区间 Lipschitz 同胚群的几个结果,继续研究了 Lipschitz 同胚群的上同调,保留了余维 1 的可微分叶。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Norio Kono: "Nash equilibria of randomly stoped repeated prisonei's dilemma"ICM2002GTA Proceedings. 363-367 (2002)
Norio Kono:《随机停止重复囚犯困境的纳什均衡》ICM2002GTA 论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
加藤 信一: "WHITTAKER-SHINTANI FUNCTIONS FOR ORTHOGONAL GROUPS"Tohoku Math.J.. 55・1. 1-64 (2003)
加藤新一:“正交群的惠特克-新谷函数”Tohoku Math.J.. 55・1 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
河野 敬雄: "Nash equilibria of randomly stopped repeated prisoner's dilemma"ICM 2002 GTA Proceedings. 363-367 (2002)
Takao Kono:“随机停止重复囚徒困境的纳什均衡”ICM 2002 GTA Proceedings 363-367 (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshinori Morimoto: "Logarithmic Sobolev inequality and semi-linear Dirichlet problems for infinitely dogenerate elliptic operators"Asterisque. Vol.284. 245-264 (2003)
Yoshinori Morimoto:“无限生成椭圆算子的对数 Sobolev 不等式和半线性 Dirichlet 问题”星号。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Michihiko Fujii: "An expression of harmonic vector fields of hyperbolic 3-cone-manifolds in terms of the hypergeometric functions"Surikaisekiben Ryusho Kokyu roku. Vol.1270. 112-125 (2002)
Michihiko Fujii:“用超几何函数表示双曲 3 锥体流形的调和向量场”Surikaisekiben Ryusho Kokyu roku。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

UE Masaaki其他文献

UE Masaaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('UE Masaaki', 18)}}的其他基金

Topology of low dimensional manifolds with various geometric structures
具有各种几何结构的低维流形拓扑
  • 批准号:
    20540072
  • 财政年份:
    2008
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of Low-dimensicnal manifolds with various geometric structures
各种几何结构低维流形的研究
  • 批准号:
    18540081
  • 财政年份:
    2006
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research for low-climensional manifolds with various geometric structures
各种几何结构低维流形的研究
  • 批准号:
    12640068
  • 财政年份:
    2000
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
  • 批准号:
    2003892
  • 财政年份:
    2020
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Continuing Grant
On the geometry of CMC hyper surfaces embedded in a manifold of dimension 4 or 5
嵌入 4 维或 5 维流形的 CMC 超曲面几何
  • 批准号:
    2289230
  • 财政年份:
    2019
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Studentship
Surgery on 4-manifolds by exceptional Dehn surgery on 3-manifold
通过特殊的 Dehn 3 歧管手术进行 4 歧管手术
  • 批准号:
    16K05143
  • 财政年份:
    2016
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of 4 dimensional manifolds using mapping class groups and its applications
利用映射类群构建4维流形及其应用
  • 批准号:
    25800043
  • 财政年份:
    2013
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
4-Manifold topology and related topics
4-流形拓扑及相关主题
  • 批准号:
    1005304
  • 财政年份:
    2010
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了