Combinatorial Study of Crystal Bases and its Application to Discrete Integrable Systems
晶体基的组合研究及其在离散可积系统中的应用
基本信息
- 批准号:14540026
- 负责人:
- 金额:$ 2.56万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(i) Geometric crystalGeometric crystal, indtoduced axiomatically by Berenstein and Kazhdan, was consttructed explicitly for type D^(1)_n of Kac-Moody Lie algebras. By using a matrix realization of this geometric crystal, we constructed a birational mapping on the product (tropical R) commuting with the action of the geometric crystal and also,showed that it satisfies the Yang-Baxter equation. It is believed that a geometric crystal exists arrogated to each vertex of the Dynkin diagram corresponding to the Lie algebra. For type D, there are n vertices, so it is expected that there are n distinct geometric crystals. During the last yeah we calculated the geometric crystal for k=2 by Mathematics in collaboration with Masaki Kashiwara at RIMS, Kyoto University. Data is huge and no way to print it out. However to write it down in a meaningful manner is, besides with the extension to the case when k is greater than 2, becomes a future problem.(ii)Crystal and soliton cellular automaton associated to an exceptional acne Lie algebraCoordinate representation of a series of finite crystals for an exceptional affine Lie algebra D_4^(3) is given and the zero action is explicitly obtained. Moreover we constructed a cell automaton corresponding to this series of crystals and determined the internal degree of freedom of the solitons appearing in the system and the scattering rule of two solitons.(iii)Box-ball system with reflecting endWe have extended the box-ball system, an important example of ultra discrete integrable systems, to the case with one reflecting end. Similar to the usual box-ball system, it has an infinite family of commuting time evolutions and conserved quantities associated to each time evolution. We also defined soliton states and described the reflection rule of one soliton and the scattering rule of two solitons in terms of combinatorics of crystals.
(i) 几何晶体几何晶体由Berenstein 和Kazhdan 公理化地引入,是为Kac-Moody 李代数的D^(1)_n 型明确构造的。通过使用这种几何晶体的矩阵实现,我们构建了在几何晶体作用下的乘积(热带R)上的双有理映射,并证明它满足Yang-Baxter方程。人们相信,对应于李代数的 Dynkin 图的每个顶点都存在一个几何晶体。对于 D 型,有 n 个顶点,因此预计有 n 个不同的几何晶体。最后,我们与京都大学 RIMS 的 Masaki Kashiwara 合作,通过数学计算了 k=2 的几何晶体。数据量很大,没有办法打印出来。然而,以有意义的方式将其写下来,除了扩展到 k 大于 2 的情况之外,还成为未来的问题。 (ii) 与异常痤疮李代数相关的晶体和孤子元胞自动机一系列给出了特殊仿射李代数 D_4^(3) 的有限晶体,并显式获得了零作用。此外,我们还构建了与这一系列晶体相对应的元胞自动机,并确定了系统中出现的孤子的内部自由度以及两个孤子的散射规则。 (iii)带反射端的盒球系统我们对盒球系统进行了扩展。系统是超离散可积系统的一个重要例子,适用于具有一个反射端的情况。与通常的盒子球系统类似,它具有无限的通勤时间演化族以及与每个时间演化相关的守恒量。我们还定义了孤子态,并用晶体组合学描述了一个孤子的反射规则和两个孤子的散射规则。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tropical R and tau functions
Tropical R 和 tau 函数
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:A.Kuniba et al.
- 通讯作者:A.Kuniba et al.
G.Hatayama et al.: "Scattering rules in soliton cellular automata…"Contemporary Mathematics. 297. 151-182 (2002)
G. Hatayama 等人:“孤子元胞自动机中的散射规则……”当代数学 297. 151-182 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Rigorous numerics for localized patterns to the quintic Swift-Hohenherg equation
五次 Swift-Hohenherg 方程的局部模式的严格数值
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Y.Hiraoka; T.Ogawa
- 通讯作者:T.Ogawa
Rigorous numerics for localized patterns to the quintic Swift-Hohenberg equation
五次 Swift-Hohenberg 方程局部模式的严格数值
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Y.Hiraoka; T.Ogawa
- 通讯作者:T.Ogawa
Factorization, reduction and embedding in integrahie cellular automata
积分元胞自动机中的因式分解、约简和嵌入
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:A.Kuniba et al.
- 通讯作者:A.Kuniba et al.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKADO Masato其他文献
OKADO Masato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKADO Masato', 18)}}的其他基金
New developments in the study of quantum groups
量子群研究新进展
- 批准号:
19K03426 - 财政年份:2019
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Approach to the polynomials related to representation theory from quantum integrable systems
量子可积系统表示论相关多项式的探讨
- 批准号:
23654007 - 财政年份:2011
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Studies of the algebraic and combinatorial structures related to quantum integrable systems
与量子可积系统相关的代数和组合结构的研究
- 批准号:
23340007 - 财政年份:2011
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Representation Theory of Quantum Groups and Integrable Systems
量子群与可积系统的表示论
- 批准号:
20540016 - 财政年份:2008
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable Systems and Combinatorial Representation Theory
可积系统和组合表示理论
- 批准号:
18540030 - 财政年份:2006
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affine Lie algebra characters and Bethe Ansatz
仿射李代数字符和 Bethe Ansatz
- 批准号:
11640027 - 财政年份:1999
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial Studies of Demazure Modules
Demazure 模块的组合研究
- 批准号:
09640034 - 财政年份:1997
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
- 批准号:
23K03029 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
In Silico Study and Optimization of Molecular Nanomotors for Membrane Photopharmacology
膜光药理学分子纳米马达的计算机研究和优化
- 批准号:
10629113 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Catalytically Generated Amidyl Radicals for Site-Selective Intermolecular C-H Functionalization
催化生成酰胺自由基用于位点选择性分子间 C-H 官能化
- 批准号:
10679463 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
- 批准号:
10678562 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Exploring spin coherence engineering in group IV semiconductor quantum structures
探索 IV 族半导体量子结构中的自旋相干工程
- 批准号:
23H05455 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (S)