Elucidation of effect of hydrogen on giga-cycle fatigue mechanism and establishment of improvement method of fatigue strength reliability

氢对十次循环疲劳机理的阐明及疲劳强度可靠性改进方法的建立

基本信息

  • 批准号:
    14001002
  • 负责人:
  • 金额:
    $ 292.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2006
  • 项目状态:
    已结题

项目摘要

In recent years, a special concern has been raised about the development and commercialization of fuel cell (FC) systems to solve both the global warming and energy problems. Under such circumstance, the role of this research project has been significantly increasing to ensure the safety use of FC systems in the near future. In this project, the effect of hydrogen on giga-cycle fatigue mechanism in high strength steels has been studied as well as the effect of hydrogen on fatigue properties of candidate materials for FC systems. The obtained results are as follows:(1) The evidences of interaction of hydrogen on giga-cycle fatigue failure have been shown by the fatigue tests of hydrogen-content-controlled specimens, the secondary ion mass spectrometry and the tritium autoradiography.(2) The giga-cycle fatigue mechanism taking the hydrogen interaction into consideration has been proposed. It has been shown that the giga-cycle fatigue strength can be improved by controlling hydrogen content in materials, inclusion size and inclusion type.(3) A fatigue design method in giga-cycle regime has been proposed based on the area parameter model, the statistics of extremes and the growth curve of the optically dark area (ODA).(4) A number of reliable fatigue data on the effect of hydrogen has been obtained about the candidate materials for FC systems. In addition, some important findings about the degradation mechanism due to hydrogen have been given, e.g. the slip localization due to hydrogen and the effect of phase transformations on the crack-growth acceleration, etc.Considering all the results in this project, the following two significant conclusions have been obtained:(I) Hydrogen does not cause so-called "embrittlement" of materials, but facilitates the dislocation mobility resulting in the slip concentration.(II) The role of hydrogen trapped by inclusions in giga-cycle fatigue mechanism is to cause the microscopic slip concentration even at the lower stress.
近年来,为了解决全球变暖和能源问题,燃料电池(FC)系统的开发和商业化受到了特别关注。在这种情况下,该研究项目的作用显着增强,以确保不久的将来FC系统的安全使用。在该项目中,研究了氢对高强度钢的十次循环疲劳机制的影响,以及氢对FC系统候选材料疲劳性能的影响。得到的结果如下:(1)通过控氢试件的疲劳试验、二次离子质谱和氚放射自显影,证明了氢相互作用对十次循环疲劳失效的影响。(2)提出了考虑氢相互作用的千兆循环疲劳机制。结果表明,通过控制材料中的氢含量、夹杂物尺寸和夹杂物类型,可以提高千兆周疲劳强度。(3)提出了基于面积参数模型的千兆周疲劳设计方法, (4)针对燃料电池系统的候选材料,获得了许多关于氢影响的可靠疲劳数据。此外,还给出了一些关于氢降解机制的重要发现,例如考虑到本项目的所有结果,得到以下两个重要结论:(一)氢不会引起所谓的“脆化” (II)在千兆周疲劳机制中,夹杂物捕获的氢的作用是即使在较低应力下也会引起微观滑移集中。

项目成果

期刊论文数量(181)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of Hydrogen Gas Environment on Fatigue Crack Growth of a Stable Austenitic Stainless Steel
氢气环境对稳定奥氏体不锈钢疲劳裂纹扩展的影响
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyohei KAWAMOTO; Yasuji ODA; Hiroshi NOGUCHI; Kenji HIGASHIDA
  • 通讯作者:
    Kenji HIGASHIDA
非金属介在物起点の疲労き裂による疲労限度の消滅と人工微小欠陥から発生した疲労き裂の停留
非金属夹杂物产生的疲劳裂纹和人为微缺陷产生的疲劳裂纹停滞导致疲劳极限消失
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    村上敬宜; 長田淳治
  • 通讯作者:
    長田淳治
The effect of hydrogen on fatigue properties of steels used for fuel cell system
氢对燃料电池系统用钢疲劳性能的影响
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yukitaka Murakami; Hisao Matsunaga
  • 通讯作者:
    Hisao Matsunaga
水素ガス雰囲気におけるSUS316L鋼の疲労き裂伝ぱ特性
SUS316L钢在氢气气氛中疲劳裂纹扩展特性
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    河本 恭平; 尾田 安司; 野口 博司; 東田 賢二
  • 通讯作者:
    東田 賢二
Friction and Wear of Lubricated Austenitic Stainless Steel Sliding Pair in Hydrogen Atmosphere
氢气气氛中润滑奥氏体不锈钢滑动副的摩擦磨损
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshinori SAWAE; Kazuhiro NAKASHIMA; Hiroshi NOGUCHI; Teruo MURAKAMI; Takanori SAWANO
  • 通讯作者:
    Takanori SAWANO
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YUKITAKA Murakami其他文献

YUKITAKA Murakami的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

生物质氧化脱氢助力电解水制氢的双组分催化剂构筑及催化机理研究
  • 批准号:
    22302103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
苯并二噁唑桥联全共轭共价有机骨架的合成及其光催化水劈裂制氢性能研究
  • 批准号:
    52373210
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
产氢产乙酸菌和乙酸产甲烷菌细胞膜脂质响应高氨胁迫的分子机制及调控研究
  • 批准号:
    52300172
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中空硫化物基催化剂构筑及其光催化制氢偶联有机污染物降解研究
  • 批准号:
    22372137
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
厌氧菌藻生物膜降解噻唑化合物的氢营养代谢机理研究
  • 批准号:
    52300043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Revolutionising Electrolysers for Low-Cost Green Hydrogen Production
革新电解槽以实现低成本绿色制氢
  • 批准号:
    IM240100216
  • 财政年份:
    2024
  • 资助金额:
    $ 292.86万
  • 项目类别:
    Mid-Career Industry Fellowships
High-Efficiency, Modular and Low-Cost Hydrogen Liquefaction and Storage
高效、模块化、低成本的氢气液化和储存
  • 批准号:
    DE240100863
  • 财政年份:
    2024
  • 资助金额:
    $ 292.86万
  • 项目类别:
    Discovery Early Career Researcher Award
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 292.86万
  • 项目类别:
    Discovery Early Career Researcher Award
EXSOLUTION-BASED NANOPARTICLES FOR LOWEST COST GREEN HYDROGEN VIA ELECTROLYSIS
基于萃取的纳米颗粒通过电解生产成本最低的绿氢
  • 批准号:
    10102891
  • 财政年份:
    2024
  • 资助金额:
    $ 292.86万
  • 项目类别:
    EU-Funded
Delivery of liquid Hydrogen for Various Environment at High Rate
为各种环境高速输送液氢
  • 批准号:
    10110515
  • 财政年份:
    2024
  • 资助金额:
    $ 292.86万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了