Research of Learning and Extracting Manufacturing Quality by Voxel Mapping

通过体素映射学习和提取制造质量的研究

基本信息

  • 批准号:
    13650804
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2004
  • 项目状态:
    已结题

项目摘要

A methodology for extracting and learning geometric features has been studied. At first, an algorithm was developed to create voxels (volume pixels) easily from three-dimensional CAD data. A voxel is a picture element in a three-dimensional coordinate system. Using this algorithm, CAD data such as STL formatted data can be converted to very fine voxels in a few seconds. Then, distance values from the surface of each voxel are calculated. At the same time, a Ds (distance from surface) map can be obtained. In the next step, skeletons of shapes are extracted as polygons from the mapped data.Voxels with the maximum Ds among neighboring voxels are selected as skeleton candidates. After the selection, the candidates are converted to straight lines or circular rings. They are then represented by several vectors and stored as a tree structure. A standard tree involves, for example, four levels and each branch has four descendants. Each parent branch has the same number of descendants. The attributes include such as the scaled volume, connection strength, and scaled X, Y, Z coordinates. These vectors are the input to a skeleton classifier, which is constructed on the basis of the back propagation neural network model. The proposed approach was implemented on a PC machine.A viewer was developed to display the skeletons clearly in three-dimensional shapes. Several parts were selected to demonstrate the classification capability for this methodology. Here, the skeletons extracted directly from the three-dimensional shapes were used. The back propagation neural network model should be trained using some representative shapes. It was found that this method is practically useful through these experiments.
研究了提取和学习几何特征的方法。首先,开发了一种算法来轻松地从三维 CAD 数据创建体素(体积像素)。体素是三维坐标系中的图像元素。使用该算法,CAD 数据(例如 STL 格式的数据)可以在几秒钟内转换为非常精细的体素。然后,计算距每个体素表面的距离值。同时可以获得Ds(距表面的距离)图。在下一步中,从映射数据中将形状的骨架提取为多边形。选择相邻体素中具有最大 Ds 的体素作为候选骨架。选择后,候选对象将转换为直线或圆环。然后它们由多个向量表示并存储为树结构。例如,标准树涉及四个级别,每个分支有四个后代。每个父分支都有相同数量的后代。这些属性包括缩放体积、连接强度和缩放 X、Y、Z 坐标等。这些向量是骨架分类器的输入,该骨架分类器是在反向传播神经网络模型的基础上构建的。所提出的方法在 PC 机上实现。开发了一个查看器来以三维形状清晰地显示骨骼。选择了几个部分来演示该方法的分类能力。这里,使用了直接从三维形状中提取的骨架。应使用一些代表性形状来训练反向传播神经网络模型。通过这些实验发现该方法在实际中是有用的。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simple Hybrid Camera-Based System Using Two Views for Three-Dimensional Body Measurements
使用两个视图进行三维身体测量的简单的基于相机的混合系统
  • DOI:
    10.3390/sym16010049
  • 发表时间:
    2023-12-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohammad Montazerian;F. Leymarie
  • 通讯作者:
    F. Leymarie
EXTRACTING AND LEARNING GEOMETRIC FEATURES BASED ON A VOXEL MAPPING METHOD FOR MANUFACTURING DESIGN
基于体素映射方法的几何特征提取和学习用于制造设计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGASAKA Yoshiyuki其他文献

NAGASAKA Yoshiyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAGASAKA Yoshiyuki', 18)}}的其他基金

Development research of simulation model for cost management
成本管理仿真模型开发研究
  • 批准号:
    23530611
  • 财政年份:
    2011
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fundamental research about MOT and Management Accounting
MOT与管理会计基础研究
  • 批准号:
    19530423
  • 财政年份:
    2007
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RESEARCH ON ADVANCED KOWLEDGE DATABASE FOR DESIGN OF MATERIAL PROCESSING
材料加工设计高级知识库研究
  • 批准号:
    08650878
  • 财政年份:
    1996
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

基于不确定性分析的产品制造过程多元质量特性经济参数设计
  • 批准号:
    72302208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
制造过程关键质量特性的智能动态辨识与过程耦合控制方法研究
  • 批准号:
    72361024
  • 批准年份:
    2023
  • 资助金额:
    29 万元
  • 项目类别:
    地区科学基金项目
制造商对C2C市场中二手产品的质量干预与新产品定价策略
  • 批准号:
    72371198
  • 批准年份:
    2023
  • 资助金额:
    42 万元
  • 项目类别:
    面上项目
数字化转型对制造业企业创新质量的影响:作用机制、边界条件和政策研究
  • 批准号:
    72374050
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
互联网空间重塑效应对制造业高质量发展影响研究:集聚-分散动态视角
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323084
  • 财政年份:
    2024
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323082
  • 财政年份:
    2024
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Enhancing the quality manufacturing of advanced and affordable pharmaceuticals in the U.S. (VA)
NSF 引擎开发奖:提高美国 (VA) 先进且价格实惠的药品的质量制造
  • 批准号:
    2315165
  • 财政年份:
    2024
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
FuSe: Precise Sequence Specific Block Copolymers for Directed Self-Assembly - Co-Design of Lithographic Materials for Pattern Quality, Scaling, and Manufacturing
FuSe:用于定向自组装的精确序列特定嵌段共聚物 - 用于图案质量、缩放和制造的光刻材料的协同设计
  • 批准号:
    2329133
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了