Theory of global well-posedness on the nonlinear partial differential equations

非线性偏微分方程的全局适定性理论

基本信息

项目摘要

We investigate the local existence of strong solutions and their blow-up within a finite time in arbitrary dimensional domains. The life-span of local solutions is characterized in terms of the L^1 and L^p-norms of the given initial data. Simultaneously, it is clarified that the total mass and the second momentum of the initial data together with the coefficient of the system of equations have a great influence on the blow-up phenomena. As an application, we prove that the blow-up solution either exhibits a definite blow-up rate determined by p, or oscillates in L^1 with the larger amplitude than the absolute constant. Furthermore, in multi-connected domains, it is still an open question whether there does exist a solution of the stationary Navier-Stoeks equations with the inhomogeneous boundary data whose total flux is zero. The relation between the nonlinear structure of the equations and the topological invariance of the domain plays an important role for the solvability of this problem. We prove that if the harmonic part of solenoidal extensions of the given boundary data associated with the second Betti number of the domain is orthogonal to non-trivial solutions of the Euler equations, then there exists a solution for any viscosity constant. The relation between Leary's inequality and the topological type of the domain is also clarified.
我们研究强解的局部存在性及其在有限时间内在任意维域中的爆炸。局部解的寿命是根据给定初始数据的 L^1 和 L^p 范数来表征的。同时阐明了初始数据的总质量和二次动量以及方程组的系数对爆炸现象有很大的影响。作为一个应用,我们证明了爆炸解要么表现出由 p 确定的确定的爆炸率,要么以比绝对常数更大的振幅在 L^1 中振荡。此外,在多连通域中,总通量为零的非齐次边界数据的平稳Navier-Stoeks方程是否存在解仍然是一个悬而未决的问题。方程的非线性结构与域的拓扑不变性之间的关系对于该问题的可解性起着重要作用。我们证明,如果与域的第二 Betti 数相关的给定边界数据的螺线管扩展的调和部分与欧拉方程的非平凡解正交,则存在任何粘度常数的解。还阐明了Leary不等式与域的拓扑类型之间的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Leray's inequality in 3D multi-connected domains
3D 多连通域中的 Leray 不等式
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    木村拓馬;木下武彦;中尾充宏;小薗英雄
  • 通讯作者:
    小薗英雄
Blow-up for a semilinear parabolic equation with large diffusion on R^n
R^n 上具有大扩散的半线性抛物线方程的放大
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H.Takahashi;M.Takasaki 他;中野 敏行;岩下芳久;Kazuhiro Ishige
  • 通讯作者:
    Kazuhiro Ishige
Global DIV-CURL Lemma in bounded domains in R^3
R^3 有界域中的全局 DIV-CURL 引理
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kozono;H;Yanagisawa;T
  • 通讯作者:
    T
Generalized Lax-Milgram theorem in Banach spaces and its application to the elliptic system of boundary value problems
  • DOI:
    10.1007/s00229-012-0586-6
  • 发表时间:
    2013-07
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    H. Kozono;T. Yanagisawa
  • 通讯作者:
    H. Kozono;T. Yanagisawa
$L^r$-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOZONO Hideo其他文献

KOZONO Hideo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOZONO Hideo', 18)}}的其他基金

New development of the theory on turbulence via method of nonlinear partial differential equations
非线性偏微分方程法湍流理论的新发展
  • 批准号:
    24654032
  • 财政年份:
    2012
  • 资助金额:
    $ 93.52万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
United theory of existence of global solution and its asymptotic behavior to the nonlinear partial differential equations
非线性偏微分方程全局解的存在性及其渐近行为的联合理论
  • 批准号:
    15104001
  • 财政年份:
    2003
  • 资助金额:
    $ 93.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Research on well-posedness for the Navier-Stokes equations
纳维-斯托克斯方程的适定性研究
  • 批准号:
    09440056
  • 财政年份:
    1997
  • 资助金额:
    $ 93.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).

相似海外基金

Well-posedness and global dynamics of solutions to nonlinear partial differential equations
非线性偏微分方程解的适定性和全局动力学
  • 批准号:
    19K14581
  • 财政年份:
    2019
  • 资助金额:
    $ 93.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometry of partial differential equations and inverse problems
偏微分方程的几何和反问题
  • 批准号:
    18H01126
  • 财政年份:
    2018
  • 资助金额:
    $ 93.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Einstein Equation and Three Dimensional Manifolds
爱因斯坦方程和三维流形
  • 批准号:
    17H01091
  • 财政年份:
    2017
  • 资助金额:
    $ 93.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Deepening of potential analysis on nonsmooth domains - Applications to PDE and ideal boundary
非光滑域势分析的深化——偏微分方程和理想边界的应用
  • 批准号:
    17H01092
  • 财政年份:
    2017
  • 资助金额:
    $ 93.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
流体力学に現れる非線形偏微分方程式の調和解析の方法による研究
利用流体力学中出现的非线性偏微分方程的调和分析方法进行研究
  • 批准号:
    07J01437
  • 财政年份:
    2007
  • 资助金额:
    $ 93.52万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了