Study of fractional Brownian motion

分数布朗运动的研究

基本信息

  • 批准号:
    10640107
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

1. Fractional Brownian motions are Gaussian processes having self-similarity. We studied the relationship between the Hearst index and the asymptotic behavior of the tail probabilities of their local times. In relation to this problem we studied the order of infinitesimal of the determinant of the covariance matrix as the dimension goes to infinity. We proved that it decreases exponentially and we found the relation between the exponent and the Hearst index. We also generalized the above results for more general Gaussian processes.2. When we studied the above problem we noticed that Tauberian theorems of exponential types are essential, and we obtained some useful theorems on this subject. As an application we studied the distribution function of the sums of independent random variables which are positive and identically distributed.3. We studied on some properties of self-similar processes.4. It is well known that the amount of time that a Brownian motion spends on the half line obeys the arc-sine law. We tried to find similar results for fractional Brownian motions but failed. Instead, however, we obtained an interesting result for linear diffusions : We found a relation between the so-called speed measure of the diffusion and the asymptotic behavior of the occupation time on the half line.
1. 分数布朗运动是具有自相似性的高斯过程。我们研究了赫斯特指数与其本地时间尾部概率的渐近行为之间的关系。关于这个问题,我们研究了当维数趋于无穷大时协方差矩阵行列式的无穷小阶。我们证明了它呈指数递减,并找到了指数与赫斯特指数之间的关系。我们还将上述结果推广到更一般的高斯过程。2.当我们研究上述问题时,我们注意到指数类型的陶伯定理是必不可少的,并且我们在这个问题上得到了一些有用的定理。作为一个应用,我们研究了正同分布的独立随机变量之和的分布函数。 3.研究了自相似过程的一些性质; 4.众所周知,布朗运动在半线上花费的时间遵循反正弦定律。我们试图为分数布朗运动找到类似的结果,但失败了。然而,相反,我们获得了线性扩散的有趣结果:我们发现了所谓的扩散速度测量与半线上占据时间的渐近行为之间的关系。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Maejima,K.Sato,and T.Watanabe: "Completely operator semi-selfdecomposable distributions."Tokyo J.Math.. 23. 235-253 (2000)
M.Maejima、K.Sato 和 T.Watanabe:“完全算子半自分解分布。”Tokyo J.Math.. 23. 235-253 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Kosugi: "Tauberian theorem of exponential type and its application to multiple convolution"J. Math. Kyoto Univ.. 39. 331-346 (1999)
N.Kosugi:“指数型陶伯定理及其在多重卷积中的应用”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Kosugi: "Functional limit theorem for occupation times of Gaussian processes -non-critical case" Osaka J.Math.(印刷中). (1999)
N.Kosugi:“高斯过程占用时间的函数极限定理 - 非关键情况”Osaka J.Math(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Kasahara N.Ogawa: "A note on the local time of fractional Brownian motion"J.Theoret.Probab.. 12. 207-216 (1999)
Y.Kasahara N.Okawa:“关于分数布朗运动的本地时间的注释”J.Theoret.Probab.. 12. 207-216 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Kasahara et al.: "On tail probability of local times of Gaussian processes"Stoch. Proc. Appl.. 82. 15-21 (1999)
Y.Kasahara 等人:“高斯过程局部时间的尾部概率”Stoch。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KASAHARA Yuji其他文献

KASAHARA Yuji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KASAHARA Yuji', 18)}}的其他基金

New approach to spectral theory of generalized second-order differential operators and its applications to probability theory
广义二阶微分算子谱论的新方法及其在概率论中的应用
  • 批准号:
    21540109
  • 财政年份:
    2009
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Additive functional of one-dimensional diffusion processes
一维扩散过程的加性泛函
  • 批准号:
    17540105
  • 财政年份:
    2005
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tauberian theorems of exponential type and its applications to probability theory
指数型陶伯定理及其在概率论中的应用
  • 批准号:
    13640104
  • 财政年份:
    2001
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STUDY OF SELF-SIMILAR PROCESSES
自相似过程的研究
  • 批准号:
    08454038
  • 财政年份:
    1996
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

镧系掺杂纳米颗粒的冷布朗运动分析与能量循环激光致冷
  • 批准号:
    62275010
  • 批准年份:
    2022
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
分数布朗运动驱动的几类分数随机(偏)微分方程的渐近行为及相关问题
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
类分数布朗运动及其驱动过程的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分数G-布朗运动驱动下的期权定价问题研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
天元数学交流项目--高度非线性的混杂型随机微分方程及相关问题
  • 批准号:
    12126202
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Analysis of asymptotic behaviors of branching Brownian motion within frontier
边界内分支布朗运动的渐近行为分析
  • 批准号:
    22K03427
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Change in the nature and enhancement of Brownian motion in shear flows caused by the non-modal growth of thermal fluctuations
热波动非模态增长引起的剪切流布朗运动性质的变化和增强
  • 批准号:
    506557030
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Research Grants
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
  • 批准号:
    RGPIN-2017-05706
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
  • 批准号:
    RGPIN-2017-05706
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
Actuarial finance, random walk in random environment, super Brownian motion
精算金融、随机环境中的随机游走、超布朗运动
  • 批准号:
    RGPIN-2017-05706
  • 财政年份:
    2021
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了