Microstructure control and ultra-high strengthening of stainless steel by the room temperature recrystallization

室温再结晶不锈钢的显微组织控制和超高强化

基本信息

  • 批准号:
    10450263
  • 负责人:
  • 金额:
    $ 5.44万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

The high strain powder metallurgy (HS-PM) process is a novel powder metallurgy process combining mechanical milling (MM) or mechanical alloying (MA), heat treatment and sintering processes, and enables one to produce an ultra-fine grain structure. It has three remarkable features : [1] a non equilibrium phase, [2] a nano grain microstructure, and [3] good workability. The extremely high strain energy given by the milling process at room temperature produces a large number of defects and this enhances the diffusion of atoms at low temperature and contributes to the formation of a non equilibrium phase such as a supersaturated solid solution or an amorphous phase. A nano grain structure is obtained from the non-equilibrium phases by controlling the heat treatment conditions, which influences the phase transformation, recovery, recrystallization, grain growth, etc (2). Grain refinement is very important to improve the mechanical properties of materials, and fine grained materials easily deform by superplasticity. Therefore, the HS-PM process is the most efficient and useful non-equilibrium powder metallurgy process because it permits simultaneous improvement of mechanical properties and workability by the control of microstructure.In this report, the HS-PM process was applied to an SUS316L stainless steel, and the mechanical properties of the material at room temperature as well as the microstructural changes during the process are discussed. The HIP compact of the HS-PM processed powder showed ultra-fine microstructure with a homogeneously dispersed σphase. The HIP compact also showed outstanding mechanical properties at room temperature as well as at the elevated temperatures.
高应变粉末冶金(HS-PM)工艺是一种结合了机械铣削(MM)或机械合金化(MA)、热处理和烧结工艺的新型粉末冶金工艺,能够产生超细晶粒结构。三个显着特征:[1]非平衡相,[2]纳米晶粒微观结构,[3]良好的加工性,室温铣削过程产生的极高应变能会产生大量缺陷,从而提高了加工性能。扩散通过控制热处理条件,可以从非平衡相中获得纳米晶粒结构,从而影响相变。 、回复、再结晶、晶粒长大等(2)晶粒细化对于提高材料的力学性能非常重要,而细晶粒材料很容易因超塑性而变形,因此HS-PM工艺是最有效和有用的。非平衡粉末冶金工艺,因为它可以通过控制微观结构同时提高机械性能和可加工性。在本报告中,HS-PM工艺应用于SUS316L不锈钢,材料在室温下的机械性能为以及在此过程中微观结构的变化,HS-PM 加工粉末显示出超细的微观结构,具有均匀分散的 σ 相,HIP 压坯在室温下也表现出出色的机械性能。温度以及高温下。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AMEYAMA Kei其他文献

Microstructure and Mechanical Properties of SUS304L Compact Produced by Shot-Blast SPD-PM Process
喷丸SPD-PM工艺生产的SUS304L复合体的显微组织和力学性能
  • DOI:
    10.2497/jjspm.66.205
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    FUJIWARA Hiroshi;SANGUAN;AMEYAMA Kei
  • 通讯作者:
    AMEYAMA Kei
Microstructure and Mechanical Properties of SUS304L Compact Produced by Shot-Blast SPD-PM Process
喷丸SPD-PM工艺生产的SUS304L复合体的显微组织和力学性能
  • DOI:
    10.2497/jjspm.66.205
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    FUJIWARA Hiroshi;SANGUAN;AMEYAMA Kei
  • 通讯作者:
    AMEYAMA Kei
Microstructure and Mechanical Properties of SUS304L Compact Produced by Shot-Blast SPD-PM Process
喷丸SPD-PM工艺生产的SUS304L复合体的显微组织和力学性能
  • DOI:
    10.2497/jjspm.66.205
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    FUJIWARA Hiroshi;SANGUAN;AMEYAMA Kei
  • 通讯作者:
    AMEYAMA Kei

AMEYAMA Kei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AMEYAMA Kei', 18)}}的其他基金

Creation of High Performance Nano-Meso Harmonic Structure Materials and the Evaluation of Their Mechanical Properties
高性能纳米细观谐波结构材料的制备及其力学性能评价
  • 批准号:
    21360344
  • 财政年份:
    2009
  • 资助金额:
    $ 5.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a novel microstructure controlling process for high performance materials using severe -plastic-deformation
利用严重塑性变形开发高性能材料的新型微观结构控制工艺
  • 批准号:
    14550693
  • 财政年份:
    2002
  • 资助金额:
    $ 5.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the manufacturing process of Nb-Al intermetallic compound by Pseudo-HIP/SHS processed PREP electrode
准HIP/SHS加工PREP电极制备Nb-Al金属间化合物的工艺开发
  • 批准号:
    07555532
  • 财政年份:
    1995
  • 资助金额:
    $ 5.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似国自然基金

基于微量铌和稀土协同处理制备高性能超级双相不锈钢的基础研究
  • 批准号:
    52374334
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向微观结构调控的增材奥氏体不锈钢抗应力腐蚀开裂机理研究
  • 批准号:
    52375147
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
T1000碳纤维/不锈钢极薄带纤维金属复合材料复杂服役环境下的动态力学性能和失效机理研究
  • 批准号:
    12302479
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
轧制工艺调控+电脉冲处理加速奥氏体抗菌不锈钢富铜相时效析出机理
  • 批准号:
    52305401
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
波纹型截面抗弯不锈钢/碳钢复合板轧制成形界面结合机理
  • 批准号:
    52375367
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 5.44万
  • 项目类别:
    Studentship
Epilepsy after penetrating brain injury
脑穿透伤后癫痫
  • 批准号:
    10809468
  • 财政年份:
    2023
  • 资助金额:
    $ 5.44万
  • 项目类别:
Fluoridated scaffolds for the treatment of critical-size bone defects
用于治疗临界尺寸骨缺损的氟化支架
  • 批准号:
    10633345
  • 财政年份:
    2023
  • 资助金额:
    $ 5.44万
  • 项目类别:
Novel Piezoelectric Amino-acid Ultrasound Transducer to Deliver Drugs Through the Blood Brain Barrier
新型压电氨基酸超声换能器通过血脑屏障输送药物
  • 批准号:
    10636328
  • 财政年份:
    2023
  • 资助金额:
    $ 5.44万
  • 项目类别:
Biodegradable Metal Stent Alloys for Vascular Applications
用于血管应用的可生物降解金属支架合金
  • 批准号:
    10643743
  • 财政年份:
    2023
  • 资助金额:
    $ 5.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了